374 resultados para Maple Bluff
Resumo:
This report presents the results of stratigraphic analysis of the southwestern quadrant of the Cedar Hills Regional Landfill (CHRLF). My report was intended to incorporate the recent Area 8 borehole data into the pre-existing analyses. This analysis was conducted during the preparation of the Area 8 Hydrogeologic Report, but is my independent investigation and does not represent the opinion of UEC or their associates. The CHRLF, in Maple Valley, WA, south of Squak Mountain, is a municipal solid waste landfill that has been in operation since the 1960s. A network of borings, the product of previous investigations, exists for the study area. I utilized the compiled boring logs, previous investigations, and the recently acquired data to produce a series of interpretative cross-sections for the study area. I recognized 9 distinct stratigraphic units, including fill. My interpreted stratigraphic units are similar to those identified in previous investigations such as the Area 7 Hydrogeologic investigation (HDR Engineering and Associates, 2008). These units include pre-Olympia aged non-glacial alluvium, glacial alluvium, and glacial till. Additionally, younger, Vashon-aged deposits of glacial till, recessional outwash, recessional lacustrine, and ice-contact were observed. An isolated “till-like” deposit was observed below the Vashon till. This could possibly represent an older till as mapped by Sweet Edwards (1985) and Booth (1995). I cite the continuity of the lower contact of the Vashon till (Unit 5, Table 2) and the upper contact pre-Vashon non-glacial fluvial deposits (Unit 9, Table 2) as evidence that faults or other structural features do not offset the deposits in the study area. This conclusion supports the findings of the pre-existing body of work within the landfill property and the nearby Queen City Farms property.
Resumo:
This report provides the findings and opinions of a historical document review, hydraulic balance calculation, and proposed additional study for a property that was historically used as a bulk petroleum storage and distribution facility. The property lies along the base, west, of a heavily vegetated bluff with a tidally influenced body of water west-adjacent to the property. The western portion of the property is bounded by a seawall spanning approximately 3,200 linear feet trending north-south. The seawall’s construction details are not known, save for a 225-foot section of driven sheet pile wall located within the northern portion of the property’s seawall. Due to the presence of petroleum hydrocarbons in soil and groundwater at the property, a cleanup action for the property will likely be overseen by the state regulatory agency. The property is currently undergoing remedial investigation in an effort to identify the lateral and vertical extent in which contaminants at the property have come to be located, also known as the “site” as defined by the Model Toxics Control Act (MTCA). The majority of the property bounded within the seawall area has been characterized; however, the shoreline sediments located immediately west-adjacent of the seawall have not been properly delineated. Identifying the bounds of the site to the west within sediment is pivotal for the purposes of the remedial investigation. Since the west-adjacent shoreline is so extensive, conducting a complete sediment sampling event along the entire shoreline would be cost-prohibitive due to analytical costs and logistical issues at the property. Because of the extensive nature of the shoreline, it would greatly benefit the client and project to focus sampling efforts at areas of greater risk for contaminants along the shoreline by identifying potential preferential pathways for contaminants to migrate off of the property and into adjacent shoreline sediments. The review of historical studies of the property yielded some useful information; however much of the findings included within the historical studies were lacking original raw data, therefore limiting the information obtained. The calculated hydraulic balance for the property yielded a relatively large surplus of recharge to groundwater after precipitation events, reinforcing the concept that contaminant have potentially historically, and currently, been migrating into the adjacent shoreline through preferential pathways along the seawall. Due to the limitation within the historical studies for the property as well as the groundwater recharge identified in the hydraulic balance, an additional study was proposed in an effort to provide additional aquifer characteristics along the seawall, and the ability to observe flow propagation at and proximate to the seawall in two-dimensions through time without the need to piece separate studies together. This proposed study includes a single simultaneous tidal study which comprises select monitoring points along the seawall. This report has identified the need for additional data that can be collected through available avenues for the property based upon the client’s desires and project needs. Ultimately, the proposed additional study is suggested based upon its relatively low capital investment, and ability meet the requirements relevant to the specific project needs and scope. Assuming preferential pathways are identified through the additional study proposed within this report, a representative and cost-effective sediment sampling plan can then be put in place in an effort to define the site.
Resumo:
Landslides often occur on slopes rendered unstable by underlying geology, geomorphology, hydrology, weather-climate, slope modifications, or deforestation. Unfortunately, humans commonly exacerbate such unstable conditions through careless or imprudent development practices. Due to local geology, geography, and climatic conditions, Puget Sound of western Washington State is especially landslide-prone. Despite this known issue, detailed analyses of landslide risks for specific communities are few. This study aims to classify areas of high landslide risk on the westerly bluffs of the 7.5 minute Freeland quadrangle based on a combined approach: mapping using LiDAR imagery and the Landform Remote Identification Model (LRIM) to identify landslides, and implementation of the Shallow Slope Stability Model (SHALSTAB) to establish a landslide exceedance probability. The objective is to produce a risk assessment from two shallow landslide scenarios: (1) minimum bluff setback and runout and (2) maximum bluff setback and runout. A simple risk equation that takes into account the probability of hazard occurrence with physical and economic vulnerability (van Westen, 2004) was applied to both scenarios. Results indicate an possible total loss as much as $32.6b from shallow landslides, given a setback of 12 m and a runout of 235 m.
Resumo:
On the morning of March 27th, 2013, a small portion of a much larger landslide complex failed on the western shoreline of central Whidbey Island, Island County, Washington. This landslide, known as the Ledgewood-Bonair Landslide (LB Landslide), mobilized as much as 150,000 cubic meters of unconsolidated glacial sediment onto the coastline of the Puget Sound (Slaughter et al., 2013, Geotechnical Engineering Services, 2013). This study aims to determine how sediment from the Ledgewood-Bonair Landslide has acted on the adjacent beaches 400 meters to the north and south, and specifically to evaluate the volume of sediment contributed by the slide to adjacent beaches, how persistent bluff-derived accretion has been on adjacent beaches, and how intertidal grain sizes changed as a result of the bluff-derived sediment, LiDAR imagery from 2013 and 2014 were differenced and compared to beach profile data and grain size photography. Volume change results indicate that of the 41,850 cubic meters of sediment eroded at the toe of the landslide, 8.9 percent was redeposited on adjacent beaches within 1 year of the landslide. Of this 8.9 percent, 6.3 percent ended up on the north beach and 2.6 percent ended up on the south beach. Because the landslide deposit was primarily sands, silts, and clays, it is reasonable to assume that the remaining 91.1 percent of the sediment eroded from the landslide toe was carried out into the waters of the Puget Sound. Over the course of the two-year study, measurable accretion is apparent up to 150 meters north and 100 meters south of the landslide complex. Profile data also suggests that the most significant elevation changes occurred within the first two and half months since the landslides occurrence. The dominant surficial grain size of the beach soon after the landslide was coarse-sand; in the years following the landslide, 150 meters north of the toe the beach sediment became finer while 100 meters south of the toe the beach sediment became coarser. Overall, the LB Landslide has affected beach profile and grain size only locally, within 150 meters of the landslide toe.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The 40 km of coastline from Fortrose to Chaslands Mistake (southeastern South Island, New Zealand) comprises sediments that are part of the Early-Middle Jurassic of the Murihiku Terrane. The sediments are dominantly fluvial with some marine beds and alluvial fan deposition, and display an evolution of fluvial style which progresses from perennial flow to seasonal flow. The McPhee Cove Conglomerate is a prominent unit to the north. It has been used to separate two formations which would otherwise, on inherent lithological grounds, be difficult to distinguish. This paper discusses several similar conglomerates which occur in the south, but which are separated from the type area of the McPhee Conglomerate by major tectonic disruption. Hence, the existing lithostratigraphic nomenclature to the north, including the McPhee Cove Conglomerate, cannot be simply extended southwards. The Fortrose-Chaslands area appears to consist of two tectonic blocks, the Slope Point Block and the Brothers Block, which are separated from each other and from the adjacent Papatowai Block by major strike faults (or fault zones). A change is proposed to the existing stratigraphy which involves recognising all terrestrial sediments as part of the False Island Formation. Four prominent clast-supported conglomerate horizons are named as members of the False Islet Formation: the White Head Conglomerate, Black Bluff Conglomerate. Hoiho Conglomerate, and Slope Point Conglomerate Members. The latter contains five named conglomerate beds.
Resumo:
In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision for a linear time. We have used a programm written in Maple to check the monotony of P(t)ue (C,p) for the investigated codes for a finite set of points of p € [0, p/(q-1)] and in this way to determine which of them are not proper.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.
Resumo:
The paper considers the use and the information support of the most important mathematical Application Packages (AP), such as Maple, Matlab, Mathcad, Mathematica, Statistica and SPSS – mostly used during Calculus tuition in Universities. The main features of the packages and the information support in the sites of the producers are outlined, as well as their capacity for work in Internet, together with educational sites and literature related to them. The most important resources of the TeX system for preparation of mathematical articles and documents are presented.
Resumo:
We consider quadrate matrices with elements of the first row members of an arithmetic progression and of the second row members of other arithmetic progression. We prove the set of these matrices is a group. Then we give a parameterization of this group and investigate about some invariants of the corresponding geometry. We find an invariant of any two points and an invariant of any sixth points. All calculations are made by Maple.
Resumo:
We discuss some main points of computer-assisted proofs based on reliable numerical computations. Such so-called self-validating numerical methods in combination with exact symbolic manipulations result in very powerful mathematical software tools. These tools allow proving mathematical statements (existence of a fixed point, of a solution of an ODE, of a zero of a continuous function, of a global minimum within a given range, etc.) using a digital computer. To validate the assertions of the underlying theorems fast finite precision arithmetic is used. The results are absolutely rigorous. To demonstrate the power of reliable symbolic-numeric computations we investigate in some details the verification of very long periodic orbits of chaotic dynamical systems. The verification is done directly in Maple, e.g. using the Maple Power Tool intpakX or, more efficiently, using the C++ class library C-XSC.
Resumo:
In his study -The IRS Collection Division: Contacts and Settlements - by John M. Tarras, Assistant Professor School of Hotel, Restaurant and Institutional Management, Michigan State University, Tarras initially states: “The collection division of the internal revenue service is often the point of contact for many hospitality businesses. The author describes how the division operates, what the hospitality firm can expect when contacted by it, and what types of strategies firms might find helpful when negotiating a settlement with the IRS.” The author will have you know that even though most chance meetings with the IRS Collection Division are due to unfortunate tax payment circumstances, there are actually more benign reasons for close encounters of the IRS kind. This does not mean, however, that brushes with the IRS Collection Division will end on an ever friendlier note. “…the Tax Reform Act of 1986 with its added complexity will cause some hospitality firms to inadvertently fail to make proper payments on a timely basis,” Tarras affords in illustrating a perhaps less pugnacious side of IRS relations. Should a hospitality business owner represent himself/herself before the IRS? Never, says Tarras. “Too many taxpayers ruin their chances of a fair settlement by making what to them seem innocent remarks, but ones that turn out to be far different,” warns Professor Tarras. Tarras makes the distinction between IRS the Collection Division, and IRS the Audit Division. “While the Audit Division is interested in how the tax liability arose, the Collection Division is generally only interested in collecting the liability,” he informs you. Either sounds firmly in hostile territory. They don’t bluff. Tarras does want you to know that when the IRS threatens to levy on the assets of a hospitality business, they will do so. Those assets may extend to personal and real property as well, he says. The levy action is generally the final resort in an IRS collection effort. Professor Tarras explains the lien process and the due process attached to that IRS collection tactic. “The IRS can also levy a hospitality firm owner's wages. In this case, it is important to realize that you are allowed to exempt from levy $75 per week, along with $25 per week for each of your dependents (unless your spouse works),” Professor Tarras says with the appropriate citation. What are the options available to the hospitality business owner who finds himself on the wrong side of the IRS Collection Division? Negotiate in good faith says Professor Tarras. “In many cases, a visit to the IRS office will greatly reduce the chances that a simple problem will turn into a major one,” Tarras advises. He dedicates the last pages of the discussion to negotiation strategies.
Resumo:
Travail créatif / Creative Work