832 resultados para Manuscripts, Russian (Old)
Resumo:
Background
Little is known about the quality of life (QoL) of disabled children. We describe self-reported QoL of children with cerebral palsy, factors that influence it, and how it compares with QoL of the general population.
Methods
1174 children aged 8–12 years were randomly selected from eight population-based registers of children with cerebral palsy in six European countries and 743 (63%) agreed to participate; one further region recruited 75 children from multiple sources. Researchers visited these 818 children. 318 (39%) with severe intellectual impairment could not self-report; 500 (61%) reported their QoL using KIDSCREEN, an instrument with scores in ten domains, each with SD=10. Multivariable regression was used to relate QoL to impairments, pain, and sociodemographic characteristics. Comparisons were made with QoL data from the general population.
Findings
Impairments were not significantly associated with six KIDSCREEN domains. Comparison of least and most able groups showed that severely limited self-mobility was significantly associated with reduced mean score for physical wellbeing (7·6, 95% CI 2·7–12·4); intellectual impairment with reduced mean for moods and emotions (3·7, 1·5–5·9) and autonomy (3·3, 0·9–5·7); and speech difficulties with reduced mean for relationships with parents (4·5, 1·9–7·1). Pain was common and associated with lower QoL on all domains. Impairments and pain explained up to 3% and 7%, respectively, of variation in QoL. Children with cerebral palsy had similar QoL to children in the general population in all domains except schooling, in which evidence was equivocal, and physical wellbeing, in which comparison was not possible.
Interpretation
Parents can be reassured that most children aged 8–12 years with cerebral palsy will have similar QoL to other children. This finding should guide social and educational policy to ensure that disabled children participate fully in society. Because of its association with QoL, children's pain should be carefully assessed.
Resumo:
With the advent of 'ancient DNA' studies on preserved material of extant and extinct species, museums and herbaria now represent an important although still underutilized resource in molecular ecology. The ability to obtain sequence data from archived specimens can reveal the recent history of cryptic species and introductions. We have analysed extant and herbarium samples of the highly invasive green alga Codium fragile, many over 100 years old, to identify cryptic accessions of the invasive strain known as C. fragile ssp. tomentosoides, which can be identified by a unique haplotype. Molecular characterization of specimens previously identified as native in various regions shows that the invasive tomentosoides strain has been colonizing new habitats across the world for longer than records indicate, in some cases nearly 100 years before it was noticed. It can now be found in the ranges of all the other native haplotypes detected, several of which correspond to recognized subspecies. Within regions in the southern hemisphere there was a greater diversity of haplotypes than in the northern hemisphere, probably as a result of dispersal by the Antarctic Circumpolar Current. The findings of this study highlight the importance of herbaria in preserving contemporaneous records of invasions as they occur, especially when invasive taxa are cryptic.
Resumo:
Phosphonates are organophosphorus molecules that contain the highly stable C-P bond, rather than the more common, and more labile, C-O-P phosphate ester bond. They have ancient origins but their biosynthesis is widespread among more primitive organisms and their importance in the contemporary biosphere is increasingly recognized; for example phosphonate-P is believed to play a particularly significant role in the productivity of the oceans. The microbial degradation of phosphonates was originally thought to occur only under conditions of phosphate limitation, mediated exclusively by the poorly characterized C-P lyase multienzyme system, under Pho regulon control. However, more recent studies have demonstrated the Pho-independent mineralization by environmental bacteria of three of the most widely distributed biogenic phosphonates: 2-aminoethylphosphonic acid (ciliatine), phosphonoacetic acid, and 2-amino-3-phosphonopropionic acid (phosphonoalanine). The three phosphonohydrolases responsible have unique specificities and are members of separate enzyme superfamilies; their expression is regulated by distinct members of the LysR family of bacterial transcriptional regulators, for each of which the phosphonate substrate of the respective degradative operon serves as coinducer. Previously no organophosphorus compound was known to induce the enzymes required for its own degradation. Whole-genome and metagenome sequence analysis indicates that the genes encoding these newly described C-P hydrolases are distributed widely among prokaryotes. As they are able to function under conditions in which C-P lyases are inactive, the three enzymes may play a hitherto-unrecognized role in phosphonate breakdown in the environment and hence make a significant contribution to global biogeochemical P-cycling.