898 resultados para Mantle sources


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin and evolution of CO2 inclusions and calcite veins in peridotite xenoliths of the Pannonian Basin, Hungary, were investigated by means of petrographic investigation and stable isotope analyses. The fluid inclusions recovered in paragenetic olivine and clinopyroxene belong to distinct populations: type A (texturally early) inclusions with regular shapes (often with negative crystal forms) forming intragranular trails, type B (texturally late) inclusions defining randomly oriented trails that reach grain boundaries Type B inclusions are often associated with silicate melt (type C) inclusions Stable carbon isotope compositions in inclusion-hosted CO2 were obtained by vacuum crushing followed by conventional dual inlet as well as continuous flow mass spectrometry in order to eliminate possible lab artifacts. Olivines, clino- and orthopyroxenes of the host peridotite have oxygen isotope compositions from 5.3 to 6.0 parts per thousand (relative to V-SMOW). without any relationship with xenolith texture. Some of the xenoliths contained calcite in various forms veins and infillings in silicate globules in veins, secondary carbonate veins filling cracks and metasomatic veins with diffuse margins The former two carbonate types have delta C-13 values around -13 parts per thousand (relative to V-PDB) and low Sr contents (<05 wt %), whereas the third type,veins with high-temperature metasomatic features have a delta C-13 value of -5 0 parts per thousand and high Sr contents up to 34 wt.% In spite of the mantle-like delta C-13 value and the unusually high Sr content typical for mantle-derived carbonate, trace element compositions have proven a crustal origin. This observation supports the conclusions of earlier studies that the carbonate melt droplets found on peridotite xenoliths in the alkaline basalts represent mobilized sedimentary carbonate. The large delta C-13 range and the C-12-enrichment in the carbonates can be attributed to devolanlization of the migrating carbonate or infiltration of surficial fluids containing C-12-rich dissolved carbon Carbon isotope compositions of inclusion-hosted CO2 range from -17 8 to -4.8 parts per thousand (relative to V-PDB) with no relation to the amount of CO2 released by vacuum crushing. Low-delta C-13 values measured by stepwise heating under vacuum suggest that the carbon component is pristine and not related to surficial contamination, and that primary mantle fluids with delta C-13 values around -5 parts per thousand were at least partly preserved in the xenoliths Tectonic reworking and heating by the basaltic magma resulted in partial CO2 release and local C-13-depletion. (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the contribution of sources and establishment characteristics, on the exposure to fine particulate matter (PM(2.5)) in the non-smoking sections of bars, cafes, and restaurants in central Zurich. PM(2.5)-exposure was determined with a nephelometer. A random sample of hospitality establishments was investigated on all weekdays, from morning until midnight. Each visit lasted 30 min. Numbers of smokers and other sources, such as candles and cooking processes, were recorded, as were seats, open windows, and open doors. Ambient air pollution data were obtained from public authorities. Data were analysed using robust MM regression. Over 14 warm, sunny days, 102 establishments were measured. Average establishment PM(2.5) concentrations were 64.7 microg/m(3) (s.d. = 73.2 microg/m(3), 30-min maximum 452.2 microg/m(3)). PM(2.5) was significantly associated with the number of smokers, percentage of seats occupied by smokers, and outdoor PM. Each smoker increased PM(2.5) on average by 15 microg/m(3). No associations were found with other sources, open doors or open windows. Bars had more smoking guests and showed significantly higher concentrations than restaurants and cafes. Smokers were the most important PM(2.5)-source in hospitality establishments, while outdoor PM defined the baseline. Concentrations are expected to be even higher during colder, unpleasant times of the year. PRACTICAL IMPLICATIONS: Smokers and ambient air pollution are the most important sources of fine airborne particulate matter (PM(2.5)) in the non-smoking sections of bars, restaurants, and cafes. Other sources do not significantly contribute to PM(2.5)-levels, while opening doors and windows is not an efficient means of removing pollutants. First, this demonstrates the impact that even a few smokers can have in affecting particle levels. Second, it implies that creating non-smoking sections, and using natural ventilation, is not sufficient to bring PM(2.5) to levels that imply no harm for employees and non-smoking clients. [Authors]