996 resultados para Manipulation techniques
Resumo:
Sampling design is critical to the quality of quantitative research, yet it does not always receive appropriate attention in nursing research. The current article details how balancing probability techniques with practical considerations produced a representative sample of Australian nursing homes (NHs). Budgetary, logistical, and statistical constraints were managed by excluding some NHs (e.g., those too difficult to access) from the sampling frame; a stratified, random sampling methodology yielded a final sample of 53 NHs from a population of 2,774. In testing the adequacy of representation of the study population, chi-square tests for goodness of fit generated nonsignificant results for distribution by distance from major city and type of organization. A significant result for state/territory was expected and was easily corrected for by the application of weights. The current article provides recommendations for conducting high-quality, probability-based samples and stresses the importance of testing the representativeness of achieved samples.
Resumo:
This thesis which consists of an introduction and four peer-reviewed original publications studies the problems of haplotype inference (haplotyping) and local alignment significance. The problems studied here belong to the broad area of bioinformatics and computational biology. The presented solutions are computationally fast and accurate, which makes them practical in high-throughput sequence data analysis. Haplotype inference is a computational problem where the goal is to estimate haplotypes from a sample of genotypes as accurately as possible. This problem is important as the direct measurement of haplotypes is difficult, whereas the genotypes are easier to quantify. Haplotypes are the key-players when studying for example the genetic causes of diseases. In this thesis, three methods are presented for the haplotype inference problem referred to as HaploParser, HIT, and BACH. HaploParser is based on a combinatorial mosaic model and hierarchical parsing that together mimic recombinations and point-mutations in a biologically plausible way. In this mosaic model, the current population is assumed to be evolved from a small founder population. Thus, the haplotypes of the current population are recombinations of the (implicit) founder haplotypes with some point--mutations. HIT (Haplotype Inference Technique) uses a hidden Markov model for haplotypes and efficient algorithms are presented to learn this model from genotype data. The model structure of HIT is analogous to the mosaic model of HaploParser with founder haplotypes. Therefore, it can be seen as a probabilistic model of recombinations and point-mutations. BACH (Bayesian Context-based Haplotyping) utilizes a context tree weighting algorithm to efficiently sum over all variable-length Markov chains to evaluate the posterior probability of a haplotype configuration. Algorithms are presented that find haplotype configurations with high posterior probability. BACH is the most accurate method presented in this thesis and has comparable performance to the best available software for haplotype inference. Local alignment significance is a computational problem where one is interested in whether the local similarities in two sequences are due to the fact that the sequences are related or just by chance. Similarity of sequences is measured by their best local alignment score and from that, a p-value is computed. This p-value is the probability of picking two sequences from the null model that have as good or better best local alignment score. Local alignment significance is used routinely for example in homology searches. In this thesis, a general framework is sketched that allows one to compute a tight upper bound for the p-value of a local pairwise alignment score. Unlike the previous methods, the presented framework is not affeced by so-called edge-effects and can handle gaps (deletions and insertions) without troublesome sampling and curve fitting.
Resumo:
This thesis studies human gene expression space using high throughput gene expression data from DNA microarrays. In molecular biology, high throughput techniques allow numerical measurements of expression of tens of thousands of genes simultaneously. In a single study, this data is traditionally obtained from a limited number of sample types with a small number of replicates. For organism-wide analysis, this data has been largely unavailable and the global structure of human transcriptome has remained unknown. This thesis introduces a human transcriptome map of different biological entities and analysis of its general structure. The map is constructed from gene expression data from the two largest public microarray data repositories, GEO and ArrayExpress. The creation of this map contributed to the development of ArrayExpress by identifying and retrofitting the previously unusable and missing data and by improving the access to its data. It also contributed to creation of several new tools for microarray data manipulation and establishment of data exchange between GEO and ArrayExpress. The data integration for the global map required creation of a new large ontology of human cell types, disease states, organism parts and cell lines. The ontology was used in a new text mining and decision tree based method for automatic conversion of human readable free text microarray data annotations into categorised format. The data comparability and minimisation of the systematic measurement errors that are characteristic to each lab- oratory in this large cross-laboratories integrated dataset, was ensured by computation of a range of microarray data quality metrics and exclusion of incomparable data. The structure of a global map of human gene expression was then explored by principal component analysis and hierarchical clustering using heuristics and help from another purpose built sample ontology. A preface and motivation to the construction and analysis of a global map of human gene expression is given by analysis of two microarray datasets of human malignant melanoma. The analysis of these sets incorporate indirect comparison of statistical methods for finding differentially expressed genes and point to the need to study gene expression on a global level.
Resumo:
Special switching sequences can be employed in space-vector-based generation of pulsewidth-modulated (PWM) waveforms for voltage-source inverters. These sequences involve switching a phase twice, switching the second phase once, and clamping the third phase in a subcycle. Advanced bus-clamping PWM (ABCPWM) techniques have been proposed recently that employ such switching sequences. This letter studies the spectral properties of the waveforms produced by these PWM techniques. Further, analytical closed-form expressions are derived for the total rms harmonic distortion due to these techniques. It is shown that the ABCPWM techniques lead to lower distortion than conventional space vector PWM and discontinuous PWM at higher modulation indexes. The findings are validated on a 2.2-kW constant $V/f$ induction motor drive and also on a 100-kW motor drive.
Resumo:
The concept of feature selection in a nonparametric unsupervised learning environment is practically undeveloped because no true measure for the effectiveness of a feature exists in such an environment. The lack of a feature selection phase preceding the clustering process seriously affects the reliability of such learning. New concepts such as significant features, level of significance of features, and immediate neighborhood are introduced which result in meeting implicitly the need for feature slection in the context of clustering techniques.
Resumo:
When a uniform flow of any nature is interrupted, the readjustment of the flow results in concentrations and rare-factions, so that the peak value of the flow parameter will be higher than that which an elementary computation would suggest. When stress flow in a structure is interrupted, there are stress concentrations. These are generally localized and often large, in relation to the values indicated by simple equilibrium calculations. With the advent of the industrial revolution, dynamic and repeated loading of materials had become commonplace in engine parts and fast moving vehicles of locomotion. This led to serious fatigue failures arising from stress concentrations. Also, many metal forming processes, fabrication techniques and weak-link type safety systems benefit substantially from the intelligent use or avoidance, as appropriate, of stress concentrations. As a result, in the last 80 years, the study and and evaluation of stress concentrations has been a primary objective in the study of solid mechanics. Exact mathematical analysis of stress concentrations in finite bodies presents considerable difficulty for all but a few problems of infinite fields, concentric annuli and the like, treated under the presumption of small deformation, linear elasticity. A whole series of techniques have been developed to deal with different classes of shapes and domains, causes and sources of concentration, material behaviour, phenomenological formulation, etc. These include real and complex functions, conformal mapping, transform techniques, integral equations, finite differences and relaxation, and, more recently, the finite element methods. With the advent of large high speed computers, development of finite element concepts and a good understanding of functional analysis, it is now, in principle, possible to obtain with economy satisfactory solutions to a whole range of concentration problems by intelligently combining theory and computer application. An example is the hybridization of continuum concepts with computer based finite element formulations. This new situation also makes possible a more direct approach to the problem of design which is the primary purpose of most engineering analyses. The trend would appear to be clear: the computer will shape the theory, analysis and design.
Resumo:
Abstract is not available.
Resumo:
During the last 10-15 years interest in mouse behavioural analysis has evolved considerably. The driving force is development in molecular biological techniques that allow manipulation of the mouse genome by changing the expression of genes. Therefore, with some limitations it is possible to study how genes participate in regulation of physiological functions and to create models explaining genetic contribution to various pathological conditions. The first aim of our study was to establish a framework for behavioural phenotyping of genetically modified mice. We established comprehensive battery of tests for the initial screening of mutant mice. These included tests for exploratory and locomotor activity, emotional behaviour, sensory functions, and cognitive performance. Our interest was in the behavioural patterns of common background strains used for genetic manipulations in mice. Additionally we studied the behavioural effect of sex differences, test history, and individual housing. Our findings highlight the importance of careful consideration of genetic background for analysis of mutant mice. It was evident that some backgrounds may mask or modify the behavioural phenotype of mutants and thereby lead to false positive or negative findings. Moreover, there is no universal strain that is equally suitable for all tests, and using different backgrounds allows one to address possible phenotype modifying factors. We discovered that previous experience affected performance in several tasks. The most sensitive traits were the exploratory and emotional behaviour, as well as motor and nociceptive functions. Therefore, it may be essential to repeat some of the tests in naïve animals for assuring the phenotype. Social isolation for a long time period had strong effects on exploratory behaviour, but also on learning and memory. All experiments revealed significant interactions between strain and environmental factors (test history or housing condition) indicating genotype-dependent effects of environmental manipulations. Several mutant line analyses utilize this information. For example, we studied mice overexpressing as well as those lacking extracellular matrix protein heparin-binding growth-associated molecule (HB-GAM), and mice lacking N-syndecan (a receptor for HB-GAM). All mutant mice appeared to be fertile and healthy, without any apparent neurological or sensory defects. The lack of HB-GAM and N-syndecan, however, significantly reduced the learning capacity of the mice. On the other hand, overexpression of HB-GAM resulted in facilitated learning. Moreover, HB-GAM knockout mice displayed higher anxiety-like behaviour, whereas anxiety was reduced in HB-GAM overexpressing mice. Changes in hippocampal plasticity accompanied the behavioural phenotypes. We conclude that HB-GAM and N-syndecan are involved in the modulation of synaptic plasticity in hippocampus and play a role in regulation of anxiety- and learning-related behaviour.
Resumo:
There is a growing interest to autonomously collect or manipulate objects in remote or unknown environments, such as mountains, gullies, bush-land, or rough terrain. There are several limitations of conventional methods using manned or remotely controlled aircraft. The capability of small Unmanned Aerial Vehicles (UAV) used in parallel with robotic manipulators could overcome some of these limitations. By enabling the autonomous exploration of both naturally hazardous environments, or areas which are biologically, chemically, or radioactively contaminated, it is possible to collect samples and data from such environments without directly exposing personnel to such risks. This paper covers the design, integration, and initial testing of a framework for outdoor mobile manipulation UAV. The framework is designed to allow further integration and testing of complex control theories, with the capability to operate outdoors in unknown environments. The results obtained act as a reference for the effectiveness of the integrated sensors and low-level control methods used for the preliminary testing, as well as identifying the key technologies needed for the development of an outdoor capable system.
Resumo:
To obtain data on phytoplankton dynamics with improved spatial and temporal resolution, and at reduced cost, traditional phytoplankton monitoring methods have been supplemented with optical approaches. In this thesis, I have explored various fluorescence-based techniques for detection of phytoplankton abundance, taxonomy and physiology in the Baltic Sea. In algal cultures used in this thesis, the availability of nitrogen and light conditions caused changes in pigmentation, and consequently in light absorption and fluorescence properties of cells. In the Baltic Sea, physical environmental factors (e.g. mixing depth, irradiance and temperature) and related seasonal succession in the phytoplankton community explained a large part of the seasonal variability in the magnitude and shape of Chlorophyll a (Chla)-specific absorption. The variability in Chla-specific fluorescence was related to the abundance of cyanobacteria, the size structure of the phytoplankton community, and absorption characteristics of phytoplankton. Cyanobacteria show very low Chla-specific fluorescence. In the presence of eukaryotic species, Chla fluorescence describes poorly cyanobacteria. During cyanobacterial bloom in the Baltic Sea, phycocyanin fluorescence explained large part of the variability in Chla concentrations. Thus, both Chla and phycocyanin fluorescence were required to predict Chla concentration. Phycobilins are major light harvesting pigments for cyanobacteria. In the open Baltic Sea, small picoplanktonic cyanobacteria were the main source of phycoerythrin fluorescence and absorption signal. Large filamentous cyanobacteria, forming harmful blooms, were the main source of the phycocyanin fluorescence signal and typically their biomass and phycocyanin fluorescence were linearly related. Using phycocyanin fluorescence, dynamics of cyanobacterial blooms can be detected at high spatial and seasonal resolution not possible with other methods. Various taxonomic phytoplankton pigment groups can be separated by spectral fluorescence. I compared multivariate calibration methods for the retrieval of phytoplankton biomass in different taxonomic groups. Partial least squares regression method gave the closest predictions for all taxonomic groups, and the accuracy was adequate for phytoplankton bloom detection. Variable fluorescence has been proposed as a tool to study the physiological state of phytoplankton. My results from the Baltic Sea emphasize that variable fluorescence alone cannot be used to detect nutrient limitation of phytoplankton. However, when combined with experiments with active nutrient manipulation, and other nutrient limitation indices, variable fluorescence provided valuable information on the physiological responses of the phytoplankton community. This thesis found a severe limitation of a commercial fast repetition rate fluorometer, which couldn t detect the variable fluorescence of phycoerythrin-lacking cyanobacteria. For these species, the Photosystem II absorption of blue light is very low, and fluorometer excitation light did not saturate Photosystem II during a measurement. This thesis encourages the use of various in vivo fluorescence methods for the detection of bulk phytoplankton biomass, biomass of cyanobacteria, chemotaxonomy of phytoplankton community, and phytoplankton physiology. Fluorescence methods can support traditional phytoplankton monitoring by providing continuous measurements of phytoplankton, and thereby strengthen the understanding of the links between biological, chemical and physical processes in aquatic ecosystems.
Resumo:
The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.