871 resultados para Machine vision and image processing
Resumo:
Person tracking systems are dependent on being able to locate a person accurately across a series of frames. Optical flow can be used to segment a moving object from a scene, provided the expected velocity of the moving object is known; but successful detection also relies on being able segment the background. A problem with existing optical flow techniques is that they don’t discriminate the foreground from the background, and so often detect motion (and thus the object) in the background. To overcome this problem, we propose a new optical flow technique, that is based upon an adaptive background segmentation technique, which only determines optical flow in regions of motion. This technique has been developed with a view to being used in surveillance systems, and our testing shows that for this application it is more effective than other standard optical flow techniques.
Resumo:
Through media such as newspapers, letterbox flyers, corporate brochures and television we are regularly confronted with descriptions for conventional (bricks 'n' mortar style) services. These representations vary in the terminology utilised, the depth of the description, the aspects of the service that are characterised and their applicability to candidate service requestors. Existing service catalogues (such as the Yellow Pages) provide little relief for service requestors from the burdensome task of discovering, comparing and substituting services. Add to this environment the rapidly evolving area of web services with its associated surfeit of standards, and the result is a considerably fragmented approach to the description of services. It leaves the reality of the Semantic Web somewhat clouded. --------- Let's consider service description briefly, before discussing our concerns with existing approaches to description. The act of describing is performed prior to advertising. This simple fact provides an interesting paradox as services cannot be described exactly before advertisement. This doesn't mean they can't be described comprehensively. By "exactly", we are referring to the fact that context provided by a service requestor (and their service needs) will alter the description of the service that is presented to the discoverer. For example, a service provider who operates a cinema wants to describe the price of their service. Let's say the advertised price is $15. They also want to state that a pensioner discount and a student discount is available which provides a 50% discount. A customer (i.e. service requestor) uses the cinema web site to purchase tickets online. They find the movie of their choice at a time that suits. However, its not until some context is provided by the requestor that the exact price is determined. The requestor might state that they are a pensioner. The same is applicable for a service requestor who purchases multiple tickets perhaps on behalf of other people. The disconnect between when the service is described and when a requestor provides context introduces challenges to the description process. A service provider would be ill-advised to offer independent descriptions that represent all the permutations possible for a single service. The descriptive effort would be prohibitive.
Resumo:
We present a new penalty-based genetic algorithm for the multi-source and multi-sink minimum vertex cut problem, and illustrate the algorithm’s usefulness with two real-world applications. It is proved in this paper that the genetic algorithm always produces a feasible solution by exploiting some domain-specific knowledge. The genetic algorithm has been implemented on the example applications and evaluated to show how well it scales as the problem size increases.
Resumo:
This paper proposes a new prognosis model based on the technique for health state estimation of machines for accurate assessment of the remnant life. For the evaluation of health stages of machines, the Support Vector Machine (SVM) classifier was employed to obtain the probability of each health state. Two case studies involving bearing failures were used to validate the proposed model. Simulated bearing failure data and experimental data from an accelerated bearing test rig were used to train and test the model. The result obtained is very encouraging and shows that the proposed prognostic model produces promising results and has the potential to be used as an estimation tool for machine remnant life prediction.
Resumo:
Agent-oriented conceptual modelling (AoCM) approaches in Requirements Engineering (RE) have received considerable attention recently. Semi-formal modeling frameworks such as i* assist analysts in requirements elicitation and reasoning of early-phase RE. AgentSpeak(L) is a widely accepted agent programming language. The Strategic Rationale (SR) model of the i* framework naturally lends itself to AgentSpeak(L) programs. Furthermore, the Strategic Dependency (SD) component of the i* framework prescribes the interaction between the agents in a multi-agent environment. This paper proposes a formal methodology for transforming a SR model to an AgentS- peak(L) agent. The constructed AgentSpeak(L) agents will then form the essential components of a multi-agent system, MAS.
Resumo:
Automatic detection of suspicious activities in CCTV camera feeds is crucial to the success of video surveillance systems. Such a capability can help transform the dumb CCTV cameras into smart surveillance tools for fighting crime and terror. Learning and classification of basic human actions is a precursor to detecting suspicious activities. Most of the current approaches rely on a non-realistic assumption that a complete dataset of normal human actions is available. This paper presents a different approach to deal with the problem of understanding human actions in video when no prior information is available. This is achieved by working with an incomplete dataset of basic actions which are continuously updated. Initially, all video segments are represented by Bags-Of-Words (BOW) method using only Term Frequency-Inverse Document Frequency (TF-IDF) features. Then, a data-stream clustering algorithm is applied for updating the system's knowledge from the incoming video feeds. Finally, all the actions are classified into different sets. Experiments and comparisons are conducted on the well known Weizmann and KTH datasets to show the efficacy of the proposed approach.
Resumo:
In Web service based systems, new value-added Web services can be constructed by integrating existing Web services. A Web service may have many implementations, which are functionally identical, but have different Quality of Service (QoS) attributes, such as response time, price, reputation, reliability, availability and so on. Thus, a significant research problem in Web service composition is how to select an implementation for each of the component Web services so that the overall QoS of the composite Web service is optimal. This is so called QoS-aware Web service composition problem. In some composite Web services there are some dependencies and conflicts between the Web service implementations. However, existing approaches cannot handle the constraints. This paper tackles the QoS-aware Web service composition problem with inter service dependencies and conflicts using a penalty-based genetic algorithm (GA). Experimental results demonstrate the effectiveness and the scalability of the penalty-based GA.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
The relationship between multiple cameras viewing the same scene may be discovered automatically by finding corresponding points in the two views and then solving for the camera geometry. In camera networks with sparsely placed cameras, low resolution cameras or in scenes with few distinguishable features it may be difficult to find a sufficient number of reliable correspondences from which to compute geometry. This paper presents a method for extracting a larger number of correspondences from an initial set of putative correspondences without any knowledge of the scene or camera geometry. The method may be used to increase the number of correspondences and make geometry computations possible in cases where existing methods have produced insufficient correspondences.
Resumo:
Cultural objects are increasingly generated and stored in digital form, yet effective methods for their indexing and retrieval still remain an important area of research. The main problem arises from the disconnection between the content-based indexing approach used by computer scientists and the description-based approach used by information scientists. There is also a lack of representational schemes that allow the alignment of the semantics and context with keywords and low-level features that can be automatically extracted from the content of these cultural objects. This paper presents an integrated approach to address these problems, taking advantage of both computer science and information science approaches. We firstly discuss the requirements from a number of perspectives: users, content providers, content managers and technical systems. We then present an overview of our system architecture and describe various techniques which underlie the major components of the system. These include: automatic object category detection; user-driven tagging; metadata transform and augmentation, and an expression language for digital cultural objects. In addition, we discuss our experience on testing and evaluating some existing collections, analyse the difficulties encountered and propose ways to address these problems.