899 resultados para Macadamia kernel
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).
Resumo:
Liming acid soils is considered to assure the availability of Mo in crops. Additionally, in peanuts (Arachis hypogaea L.) the positive response to liming is associated to a better supply of Ca+2, Mo for the nitrogenase-complex activity, and other non-nitrogen fixing activities of the crop. This study was thus undertaken to assess the effect of lime, Mo, and the lime-Mo interaction on peanut crop, on an acid Ultisol at the Mococa Experimental Station, Instituto Agronômico, São Paulo State, Brazil, from 1987 to 1990. A randomized complete block design with four replications, in a 4 x 4 factorial arrangement, was used in the study. The factors included four lime rates (0, 2, 4, and 6 t ha-1) broadcast and incorporated into the soil, and Mo (0, 100, 200, and 300 g ha-1) as (NH4)2MoO4 applied as seed dressing. Lime was applied once at the beginning of the study while Mo was applied at every planting. Peanut seed cv 'tatu' was used. Significant increase in peanut kernel yield with liming was only evident in the absence of Mo, whereas the peanut response to Mo was observed in two out of the three harvests. A higher yield response (28 % increase) was found when Mo was applied without liming. Soil molybdenum availability, as indicated by plant leaf analysis, increased significantly when lime was applied. Molybdenum fertilization led to higher leaf N content, which in turn increased peanut yield in treatments with smaller lime doses.
Resumo:
A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
[cat] En el domini dels jocs bilaterals d’assignació, es presenta una axiomàtica del nucleolus com l´unica solució que compleix les propietats de consistència respecte del joc derivat definit per Owen (1992) i monotonia de les queixes dels sectors respecte de la seva cardinalitat. Com a conseqüència obtenim una caracterització geomètrica del nucleolus mitjançant una propietat de bisecció més forta que la que satisfan els punts del kernel (Maschler et al, 1979).
Resumo:
[cat] Aquest treball tracta d’extendre la noció d’equilibri simètric de negociació bilateral introduït per Rochford (1983) a jocs d’assignació multilateral. Un pagament corresponent a un equilibri simètric de negociación multilateral (SMB) és una imputación del core que garanteix que qualsevol agent es troba en equilibri respecte a un procés de negociación entre tots els agents basat en allò que cadascun d’ells podria rebre -i fer servir com a amenaça- en un ’matching’ òptim diferent al que s’ha format. Es prova que, en el cas de jocs d’assignació multilaterals, el conjunt de SMB és sempre no buit i que, a diferència del cas bilateral, no sempre coincideix amb el kernel (Davis and Maschler, 1965). Finalment, responem una pregunta oberta per Rochford (1982) tot introduïnt un conjunt basat en la idea de kernel, que, conjuntament amb el core, ens permet caracteritzar el conjunt de SMB.
Resumo:
Losses of productivity of flooded rice in the State of Rio Grande do Sul, Brazil, may occur in the Coastal Plains and in the Southern region due to the use of saline water from coastal rivers, ponds and the Laguna dos Patos lagoon, and the sensibility of the plants are variable according to its stage of development. The purpose of this research was to evaluate the production of rice grains and its components, spikelet sterility and the phenological development of rice at different levels of salinity in different periods of its cycle. The experiment was conducted in a greenhouse, in pots filled with 11 dm³ of an Albaqualf. The levels of salinity were 0.3 (control), 0.75, 1.5, 3.0 and 4.5 dS m-1 kept in the water layer by adding a salt solution of sodium chloride, except for the control, in different periods of rice development: tillering initiation to panicle initiation; tillering initiation to full flowering; tillering initiation to physiological maturity; panicle initiation to full flowering; panicle initiation to physiological maturity and full flowering to physiological maturity. The number of panicles per pot, the number of spikelets per panicle, the 1,000-kernel weight, the spikelet sterility, the grain yield and phenology were evaluated. All characteristics were negatively affected, in a quadratic manner, with increased salinity in all periods of rice development. Among the yield components evaluated, the one most closely related to grain yields of rice was the spikelet sterility.
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.
Resumo:
Uniform-price assignment games are introduced as those assignment markets with the core reduced to a segment. In these games, for all active agents, competitive prices are uniform although products may be non-homogeneous. A characterization in terms of the assignment matrix is given. The only assignment markets where all submarkets are uniform are the Bohm-Bawerk horse markets. We prove that for uniform-price assignment games the kernel, or set of symmetrically-pairwise bargained allocations, either coincides with the core or reduces to the nucleolus
Resumo:
In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations
Resumo:
We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low-angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in nonactive slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long-range interactions between dislocations. In light of this result, we revise statistical depinning theories of dislocation assemblies and compare the theoretical results with numerical simulations and experimental data.
Resumo:
A disponibilidade de nutrientes durante o ano pode influenciar o desempenho da nogueira-macadâmia (Macadamia integrifolia). Contudo, não existem informações sobre a resposta dessa cultura ao parcelamento da adubação nas condições brasileiras. O objetivo deste trabalho foi avaliar a influência do parcelamento da adubação mineral na nutrição, produtividade e qualidade de frutos da nogueira-macadâmia. O experimento foi conduzido, durante três anos agrícolas, num Latossolo Vermelho, em Jaboticabal, SP. O delineamento experimental foi de blocos casualizados, com cinco repetições. O experimento foi constituído por quatro formas de parcelamento da adubação NPK (T1 - uma única aplicação, em outubro; T2 - duas aplicações, em outubro e dezembro; T3 - três aplicações, em outubro, dezembro e fevereiro; e T4 - quatro aplicações, em outubro, dezembro, fevereiro e abril). O parcelamento da adubação NPK proporcionou maiores teores de N nas folhas que a aplicação em dose única, mas não interferiu nos teores dos demais nutrientes. A produtividade da nogueira-macadâmia foi incrementada de forma similar com o parcelamento da adubação NPK em duas, três ou quatro vezes, entre outubro e abril, em comparação à aplicação única em outubro. A taxa de recuperação de amêndoas não foi interferida pelo parcelamento da adubação NPK.
Resumo:
We point out that using the heat kernel on a cone to compute the first quantum correction to the entropy of Rindler space does not yield the correct temperature dependence. In order to obtain the physics at arbitrary temperature one must compute the heat kernel in a geometry with different topology (without a conical singularity). This is done in two ways, which are shown to agree with computations performed by other methods. Also, we discuss the ambiguities in the regularization procedure and their physical consequences.
Resumo:
We propose a criterion for the validity of semiclassical gravity (SCG) which is based on the stability of the solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctuations. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. The homogeneous solutions of the Einstein-Langevin equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations, which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only be obtained from the Einstein-Langevin equation (the inhomogeneous term). These equations exhibit runaway solutions with exponential instabilities. A detailed discussion about different methods to deal with these instabilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based on SCG is a valid approximation in that case.
Resumo:
Uniform-price assignment games are introduced as those assignment markets with the core reduced to a segment. In these games, for all active agents, competitive prices are uniform although products may be non-homogeneous. A characterization in terms of the assignment matrix is given. The only assignment markets where all submarkets are uniform are the Bohm-Bawerk horse markets. We prove that for uniform-price assignment games the kernel, or set of symmetrically-pairwise bargained allocations, either coincides with the core or reduces to the nucleolus