826 resultados para MYOCARDIAL INJURY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard early markers for identifying and grading HIE severity, are not sufficient to ensure all children who would benefit from treatment are identified in a timely fashion. The aim of this thesis was to explore potential early biomarkers of HIE. Methods: To achieve this a cohort of infants with perinatal depression was prospectively recruited. All infants had cord blood samples drawn and biobanked, and were assessed with standardised neurological examination, and early continuous multi-channel EEG. Cord samples from a control cohort of healthy infants were used for comparison. Biomarkers studied included; multiple inflammatory proteins using multiplex assay; the metabolomics profile using LC/MS; and the miRNA profile using microarray. Results: Eighty five infants with perinatal depression were recruited. Analysis of inflammatory proteins consisted of exploratory analysis of 37 analytes conducted in a sub-population, followed by validation of all significantly altered analytes in the remaining population. IL-6 and IL-6 differed significantly in infants with a moderate/severely abnormal vs. a normal-mildly abnormal EEG in both cohorts (Exploratory: p=0.016, p=0.005: Validation: p=0.024, p=0.039; respectively). Metabolomic analysis demonstrated a perturbation in 29 metabolites. A Cross- validated Partial Least Square Discriminant Analysis model was developed, which accurately predicted HIE with an AUC of 0.92 (95% CI: 0.84-0.97). Analysis of the miRNA profile found 70 miRNA significantly altered between moderate/severely encephalopathic infants and controls. miRNA target prediction databases identified potential targets for the altered miRNA in pathways involved in cellular metabolism, cell cycle and apoptosis, cell signaling, and the inflammatory cascade. Conclusion: This thesis has demonstrated that the recruitment of a large cohortof asphyxiated infants, with cord blood carefully biobanked, and detailed early neurophysiological and clinical assessment recorded, is feasible. Additionally the results described, provide potential alternate and novel blood based biomarkers for the identification and assessment of HIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are currently under investigation as repair agents in the preservation of cardiac function following myocardial infarction (MI). However concerns have emerged regarding the safety of acute intracoronary (IC) MSC delivery specifically related to mortality, micro-infarction and microvascular flow restriction post cell therapy in animal models. This thesis aimed to firstly identify an optimal dose of MSC that could be tolerated when delivered via the coronary artery in a porcine model of acute MI (AMI). Initial dosing studies identified 25x106 MSC to be a safe MSC cell dose, however, angiographic observations from these studies recognised that on delivery of MSC there was a significant adverse decrease in distal blood flow within the artery. This observation along with additional supportive data in the literature (published during the course of this thesis) suggested MSC may be contributing to such adverse events through the propagation of thrombosis. Therefore further studies aimed to investigate the innate prothrombotic activity of MSC. Expression of the initiator of the coagulation cascade initiator tissue factor (TF) on MSC was detected in high levels on the surface of these cells. MSC-derived TF antigen was catalytically active, capable of supporting thrombin generation in vitro and enhancing platelet-driven thrombus deposition on collagen under flow. Infusion of MSC via IC route was associated with a decreased coronary flow reserve when delivered but not when coadministered with an antithrombin agent heparin. Heparin also reduced MSC-associated in situ thrombosis incorporating platelets and VWF in the microvasculature. Heparin-assisted MSC delivery reduced acute apoptosis and significantly improved infarct size, left ventricular ejection fraction, LV volumes, wall motion and scar formation at 6 weeks post AMI. In addition, this thesis investigated the paracrine factors secreted by MSC, in particular focusing on the effect on cardiac repair of a novel MSC-paracrine factor SPARCL1. In summary this work provides new insight into the mechanism by which MSC may be deleterious when delivered by an IC route and a means of abrogating this effect. Moreover we present new data on the MSC secretome with elucidation of the challenges encountered using a single paracrine factor cardiac repair strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study found that natural community supports were comprised of two distinct groupings; firstly immediate families, friends and peer support groups; secondly neighbours and local community groups such as sporting and activity- based organisations and groups. The findings of this study indicate that living with acquired brain injury involves a process where the person moves from acute high intensity health services onto rehabilitative services and then onto re-establishing independent lives. It is evident that smooth transitions and interconnectivity of services are essential in facilitating this recovery process. Instrumental to the recovery is the support of immediate family and close friends, who form people’s immediate natural support network and go a long way towards facilitating individuals in rebuilding their lives. A key finding of this study is that broader natural community supports do not appear to play as central a role in supporting individuals to live independent lives when compared to the role of family and friends. The lack of involvement of broader community groups, in many ways, prompted individuals to contact formal support services. For the majority of participants, independence is facilitated through the combination of immediate natural community supports and formal services. The role of formal support services is key to developing broader community support networks. This study found a blurred division between formal services and broader community support networks. The authors recommended that the role of formal supports services in acting as a bridge between the needs of the individual and the development of meaningful community networks, be formally recognised and further developed. Additionally, they argued that the importance of the role of broader natural community, supports such as those provided by community and sporting groups must be enhanced. Greater awareness of the issues faced by people living with acquired brain injury and its often invisible nature is necessary in this endeavour. The authors stated it is important to recognise that there are multiple issues impacting on independent living and these issues intersect, for instance with age, gender, employment, qualifications and so on. A lack of public awareness of acquired brain injury was found to be a key barrier to independent living, along with issues relating to socialising, access to employment and finances. The findings of this study reflect the complexities of living with acquired brain injury and the need for holistic support that is cognisant of the factors which impact on integration. It is vital that flexible, personalised services are developed which are fit for purpose and meet the needs of not only people with acquired brain injury but also their immediate natural community support network. Recognition of the intersection between immediate/ broader natural community supports and formal services is also key to developing the comprehensive and practical supports required to achieve an independent life. This was a qualitative study and all participants were sourced through Headway, a community based service provider for people with ABI. Data collection was divided into two stages: firstly focus groups, followed by individual interviews. Four focus groups were convened in Cork (2), Dublin (1) and Limerick (1). Each focus group was facilitated by at least two members of the research team and a total of twenty-six individuals participated in the focus groups. Thematic analysis of the data was undertaken to guide and inform the second stage of the study; the individual interviews. Ten interviews were undertaken with individuals who presented with ABI in the Cork and Limerick regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive impairment is common following traumatic brain injury (TBI), and neuroinflammatory mechanisms may predispose to the development of neurodegenerative disease. Apolipoprotein E (apoE) polymorphisms modify neuroinflammatory responses, and influence both outcome from acute brain injury and the risk of developing neurodegenerative disease. We demonstrate that TBI accelerates neurodegenerative pathology in double-transgenic animals expressing the common human apoE alleles and mutated amyloid precursor protein, and that pathology is exacerbated in the presence of the apoE4 allele. The administration of an apoE-mimetic peptide markedly reduced the development of neurodegenerative pathology in mice homozygous for apoE3 as well as apoE3/E4 heterozygotes. These results demonstrate that TBI accelerates the cardinal neuropathological features of neurodegenerative disease, and establishes the potential for apoE mimetic therapies in reducing pathology associated with neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple functions of the beta2-adrenergic receptor (ADRB2) and angiotensin-converting enzyme (ACE) genes warrant studies of their associations with aging-related phenotypes. We focus on multimarker analyses and analyses of the effects of compound genotypes of two polymorphisms in the ADRB2 gene, rs1042713 and rs1042714, and 11 polymorphisms of the ACE gene, on the risk of such an aging-associated phenotype as myocardial infarction (MI). We used the data from a genotyped sample of the Framingham Heart Study Offspring (FHSO) cohort (n = 1500) followed for about 36 years with six examinations. The ADRB2 rs1042714 (C-->G) polymorphism and two moderately correlated (r(2) = 0.77) ACE polymorphisms, rs4363 (A-->G) and rs12449782 (A-->G), were significantly associated with risks of MI in this aging cohort in multimarker models. Predominantly linked ACE genotypes exhibited opposite effects on MI risks, e.g., the AA (rs12449782) genotype had a detrimental effect, whereas the predominantly linked AA (rs4363) genotype exhibited a protective effect. This trade-off occurs as a result of the opposite effects of rare compound genotypes of the ACE polymorphisms with a single dose of the AG heterozygote. This genetic trade-off is further augmented by the selective modulating effect of the rs1042714 ADRB2 polymorphism. The associations were not altered by adjustment for common MI risk factors. The results suggest that effects of single specific genetic variants of the ADRB2 and ACE genes on MI can be readily altered by gene-gene or/and gene-environmental interactions, especially in large heterogeneous samples. Multimarker genetic analyses should benefit studies of complex aging-associated phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Impaired myocardial beta-adrenergic receptor (betaAR) signaling, including desensitization and functional uncoupling, is a characteristic of congestive heart failure. A contributing mechanism for this impairment may involve enhanced myocardial beta-adrenergic receptor kinase (betaARK1) activity because levels of this betaAR-desensitizing G protein-coupled receptor kinase (GRK) are increased in heart failure. An hypothesis has emerged that increased sympathetic nervous system activity associated with heart failure might be the initial stimulus for betaAR signaling alterations, including desensitization. We have chronically treated mice with drugs that either activate or antagonize betaARs to study the dynamic relationship between betaAR activation and myocardial levels of betaARK1. METHODS AND RESULTS: Long-term in vivo stimulation of betaARs results in the impairment of cardiac +betaAR signaling and increases the level of expression (mRNA and protein) and activity of +betaARK1 but not that of GRK5, a second GRK abundantly expressed in the myocardium. Long-term beta-blocker treatment, including the use of carvedilol, improves myocardial betaAR signaling and reduces betaARK1 levels in a specific and dose-dependent manner. Identical results were obtained in vitro in cultured cells, demonstrating that the regulation of GRK expression is directly linked to betaAR signaling. CONCLUSIONS: This report demonstrates, for the first time, that betaAR stimulation can significantly increase the expression of betaARK1 , whereas beta-blockade decreases expression. This reciprocal regulation of betaARK1 documents a novel mechanism of ligand-induced betaAR regulation and provides important insights into the potential mechanisms responsible for the effectiveness of beta-blockers, such as carvedilol, in the treatment of heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS: We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS: Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressure overload ventricular hypertrophy is accompanied by dysfunctional beta-adrenergic receptor signaling due to increased levels of the beta-adrenergic receptor kinase-1, which phosphorylates and desensitizes beta-adrenergic receptors. In this study, we examined whether increased beta-adrenergic receptor kinase 1 expression is associated with myocardial hypertrophy induced by adrenergic stimulation. With use of implanted mini-osmotic pumps, we treated mice with isoproterenol, phenylephrine, or vehicle to distinguish between alpha1- and beta-adrenergic stimulation. Both treatments resulted in cardiac hypertrophy, but only isoproterenol induced significant increases in beta-adrenergic receptor kinase-1 protein levels and activity. Similarly, in isolated adult rat cardiac myocytes, 24 hours of isoproterenol stimulation resulted in a significant 2.8-fold increase in beta-adrenergic receptor kinase-1 protein levels, whereas 24 hours of phenylephrine treatment did not alter beta-adrenergic receptor kinase-1 expression. Our results indicate that increased beta-adrenergic receptor kinase-1 is not invariably associated with myocardial hypertrophy but apparently is controlled by the state of beta-adrenergic receptor activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired beta-adrenergic receptor (betaAR) function, which includes loss of betaAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of betaAR function is agonist-stimulated receptor phosphorylation by the betaAR kinase (betaARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in betaAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of betaARK1 or the beta2AR were mated into a genetic model of murine heart failure (MLP-/-). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP-/- and MLP-/-/beta2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP-/-/betaARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP-/-/betaARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP-/- mice but less than controls. Importantly, heightened betaAR desensitization in the MLP-/- mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the betaARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal betaAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit betaARK1 as a novel mode of therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic mice were generated by using the alpha-myosin heavy chain promoter coupled to the coding sequence of a constitutively active mutant alpha 1B-adrenergic receptor (AR). These transgenic animals demonstrated cardiac-specific expression of this alpha 1-AR with resultant activation of phospholipase C as shown by increased myocardial diacylglycerol content. A phenotype consistent with cardiac hypertrophy developed in adult transgenic mice with increased heart/body weight ratios, myocyte cross-sectional areas, and ventricular atrial natriuretic factor mRNA levels relative to nontransgenic controls. These transgenic animals may provide insight into the biochemical triggers that induce hypertrophy in cardiac disease and serve as a convenient experimental model for studies of this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical use of stem cells, such as bone marrow-derived and, more recently, resident cardiac stem cells, offers great promise for treatment of myocardial infarction and heart failure. The epicardium-derived cells have also attracted attention for their angiogenic paracrine actions and ability to differentiate into cardiomyocytes and vascular cells when activated during cardiac injury. In a recent study, Chong and colleagues have described a distinct population of epicardium-derived mesenchymal stem cells that reside in a perivascular niche of the heart and have a broad multilineage potential. Exploring the therapeutic capacity of these cells will be an exciting future endeavor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 45,000 individuals are hospitalized annually for burn treatment. Rehabilitation after hospitalization can offer a significant improvement in functional outcomes. Very little is known nationally about rehabilitation for burns, and practices may vary substantially depending on the region based on observed Medicare post-hospitalization spending amounts. This study was designed to measure variation in rehabilitation utilization by state of hospitalization for patients hospitalized with burn injury. This retrospective cohort study used nationally collected data over a 10-year period (2001 to 2010), from the Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SIDs). Patients hospitalized for burn injury (n = 57,968) were identified by ICD-9-CM codes and were examined to see specifically if they were discharged immediately to inpatient rehabilitation after hospitalization (primary endpoint). Both unadjusted and adjusted likelihoods were calculated for each state taking into account the effects of age, insurance status, hospitalization at a burn center, and extent of burn injury by TBSA. The relative risk of discharge to inpatient rehabilitation varied by as much as 6-fold among different states. Higher TBSA, having health insurance, higher age, and burn center hospitalization all increased the likelihood of discharge to inpatient rehabilitation following acute care hospitalization. There was significant variation between states in inpatient rehabilitation utilization after adjusting for variables known to affect each outcome. Future efforts should be focused on identifying the cause of this state-to-state variation, its relationship to patient outcome, and standardizing treatment across the United States.