943 resultados para MULTIVARIATE DISTRIBUTIONS
Resumo:
Changes in statistics (mean, sorting, and skewness) describing grain-size distributions have long been used to speculate on the direction of sediment transport. We present a simple model whereby the distributions of sediment in transport are related to their source by a sediment transfer function which defines the relative probability that a grain within each particular class interval will be eroded and transported. A variety of empirically derived transfer functions exhibit negatively skewed distributions (on a phi scale). Thus, when a sediment is being eroded, the probability of any grain going into transport increases with diminishing grain size throughout more than half of its size range. This causes the sediment in transport to be finer and more negatively skewed than its source, whereas the remaining sediment (a lag) must become relatively coarser and more positively skewed. Flume experiments show that the distributions of transfer functions change from having a highly negative skewness to being nearly symmetrical (although still negatively skewed) as the energy of the transporting process increases. We call the two extremes low-energy and high-energy transfer functions , respectively. In an expanded sediment-transport model, successive deposits in the direction of transport are related by a combination of two transfer functions. If energy is decreasing and the transfer functions have low-energy distributions, successive deposits will become finer and more negatively skewed. If, however, energy is decreasing, but the initial transfer function has a high-energy distribution, successive deposits will become coarser and more positively skewed. The variance of the distributions of lags, sediment in transport, and successive deposits in the down-current direction must eventually decrease (i.e., the sediments will become better sorted). We demonstrate that it is possible for variance first to increase, but suggest that, in reality, an increasing variance in the direction of transport will seldom be observed, particularly when grain-size distributions are described in phi units. This model describing changes in sediment distributions was tested in a variety of environments where the transport direction was known. The results indicate that the model has real-world validity and can provide a method to predict the directions of sediment transport
Resumo:
We developed a coarse-grained yet microscopic detailed model to study the statistical fluctuations of single-molecule protein conformational dynamics of adenylate kinase. We explored the underlying conformational energy landscape and found that the system has two basins of attractions, open and closed conformations connected by two separate pathways. The kinetics is found to be nonexponential, consistent with single-molecule conformational dynamics experiments. Furthermore, we found that the statistical distribution of the kinetic times for the conformational transition has a long power law tail, reflecting the exponential density of state of the underlying landscape. We also studied the joint distribution of the two pathways and found memory effects.
Resumo:
Two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), in CHCl3 at 25 degrees C have been studied using laser light scattering. We found that the z-average radius of gyration ([R(g)]) can be scaled to the weight-average molecular weight (M(w)) as [R(g)] (nm) = 4.95 x 10(-2)M(w)(0.52) and [R(g)] (nm) = 1.25 x 10(-2)M(w)(0.66) respectively for poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), indicating that poly(ODPA/DMMDA) in CHCl3 at 25 degrees C has a more extended chain conformation than poly(BCPOBDA/DMMDA). Using the wormlike chain model approach, we found that the Flory characteristic ratios (C*) of poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA) are similar to 20 and similar to 31, respectively, indicating that both of them have a slightly extended chain conformation in comparison with typical flexible polymer chains, such as polystyrene, whose C-infinity is similar to 10. A combination of the weight-average molar mass (M(w)) with the translational diffusion coefficient distributions (G(D)) has led to D (cm(2)/s) = 3.53 x 10(-4)M(-0.579) and D (cm(2)/s) = 4.30 x 10(-4)M(-0.613) respectively for two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMTA), in CHCl3 at 25 degrees C. Using these two calibrations, we have successfully characterized the molar mass distributions of the two polyimides from their corresponding G(D)s. The exponents of these two calibrations further confirm that both of the polyimides have a slightly extended coil chain conformation in CHCl3. The chain flexibility difference between these two polyimides has also been discussed.
Resumo:
Multivariate classification methods were used to evaluate data on the concentrations of eight metals in human senile lenses measured by atomic absorption spectrometry. Principal components analysis and hierarchical clustering separated senile cataract lenses, nuclei from cataract lenses, and normal lenses into three classes on the basis of the eight elements. Stepwise discriminant analysis was applied to give discriminant functions with five selected variables. Results provided by the linear learning machine method were also satisfactory; the k-nearest neighbour method was less useful.
Resumo:
To better understand the characteristics of the clay minerals in the southern Yellow Sea, the X-ray quantitative determinations have been carried out for the surface samples obtained from the Yellow Sea. With newly compiled clay mineral synoptic maps, the depositional processes were described for four main clay minerals (illite, chlorite, kaolinite and smectite). The analysis shows that most clay minerals are of terrigenous source with the Huanghe River acting as the major sediment supplier. Besides, the source of muddy sediments in the Yellow Sea was also discussed. As for the central Yellow Sea mud (CYSM), the sediments in its northern part mainly come from the Huanghe River, and those in the rest are of multi-origin. Very similarly, a large amount of sediments in the northern part of the southeastern Yellow Sea Mud (SEYSM) derive from the Keum River and Yeong-san River, while those in the southern part are of multi-origin.
Resumo:
Based oil the measurements of particulate phosphorus (PP) in the Jiaozhou Bay front May 2003 to April 2004, the spatial distribution, seasonal variation and biogeochemical characteristics of PP Were investigated to Understand the fates and roles of phosphorus in the Jiaozhou Bay ecosystem. The Concentration of the total PP ranged from 0. 07 to 2. 09 mu mol/dm(3). The concentration of POP was from 0. 01 to 1. 83 mu mol/dm(3), with all average of with all average of 0. 33 mu mol/dm(3), which accounted for 50. 4% in total PP. In general, file concentrations of IT in surface water show obvious seasonal variations in the Jiaozhou Bay. POP was the highest in spring, which derived front the accumulation of phyto-detritus and was the lowest ill autumn, which was decomposed into seawaters to participate the recycle of phosphorus. PIP was the highest in spring and summer and Was the lowest in autumn and winter. PLP Was Mainly influenced by river input in the inner bay lint POP derived front autochthonous source in the outer bay. Overkill, the concentrations of IT in the inner bay were higher than those in mouth and the Older bay. In the inner bay. the concentrations of IT with the area near the shore were higher than those in the center of the bay. Totally PP showed the decreasing trend with depth especially in spring and winter. The high value of PP emerged in 20 and 10 in Corresponding to summer and autumn, respectively. The changes of POP showed hysteretic effect compared with the changes of Chl a in the investigated year. However, according to the Change of Chl a, the second high value of POP which should be emerged ill October was missing due to the remineralization of POP and participation in the recycle of phosphorus, which lead to the high concentration of orthophosphate in seawaters.
Resumo:
We collected fish abundance data in the Changjiang (Yangtze River) estuary and adjacent waters in November 1998, May 1999, November 2000, and May 2001. Using the data, we evaluated the characteristics of the fish assemblages at each site and investigated the effect of several environmental factors. We used a multivariate analysis, including community ordination methods such as detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA), and two-way indicator species analysis (TWINSPAN). We analyzed the biological community structure and environmental factors to determine their spatial distributions, temporal dynamics, and seasonal variations. Among the fish species, five exceeded 5% of the total abundance: Harpodon nehereus (42.82%), Benthosema pterotum (13.85%), Setipinna taty (11.64%), Thryssa kammalensis (9.17%) and Apogonichthys lineatus (6.49%). These were separated into four ecological assemblages: hypsithermal-saline, hypsithermal-brackish, hypothermal-brackish, and hypothermal-saline. We evaluated the degree of influence of environmental factors on the fish community. Our analyses suggested that environmental factors including water depth, salinity, turbidity, transparency, nutrient, and suspended matter formed a synthetic spatial gradient between the coastal and pelagic areas. Ecological and environmental factors changed temporally from 1998 to 2001, and drove the fish community succession. The environmental factors driving the fish community structure included bottom temperature, water depth, bottom and surface pH, surface total phosphorous, and bottom dissolved oxygen. This investigation was completed before completion of the Three Gorges Dam; therefore the results of this study provide an important foundation for evaluating the influence of the human activities.
Resumo:
This study was carried out in the Changjiang Estuary from 19 to 26 May 2003. Based on the data collected from 29 stations, including two anchor stations, phytoplankton taxonomic composition, abundance, diurnal variability and spatial distribution were examined. Eighty-seven species, including 54 species of diatoms and 16 red tide causative species, were identified. Average diversity index (H') and evenness (J) values were 1.04 and 0.40, respectively. A bloom in abundance of certain phytoplankton species, especially Prorocentrum dentatum and Skeletoneina costatum, was thought to be the cause of the low diversity index and evenness values. Total phytoplankton abundance averaged 6.75 x 10(5) cells 1(-1), and was much higher than previous investigation carried out in the same month in 1986. Abundance increased seaward showing a distinct spatial difference, and the dominant species varied with salinity. Correlation between phosphorus and abundance further supported the former conclusion that phosphorus is the controlling factor in phytoplankton growth in the Changjiang Estuary where light is not limiting. Based on the relationship between DO, pH and abundance, it is likely that the bloom was caused by rapid in situ growth of phytoplankton with high nutrients and sufficient light. The data also indicated that the duration of the bloom was not long and