924 resultados para MICROSATELLITE
Resumo:
Genetic diversity can be used to describe patterns of gene flow within and between local and regional populations. The Florida Everglades experiences seasonal fluctuations in water level that can influence local population extinction and recolonization dynamics. In addition, this expansive wetland has been divided into water management regions by canals and levees. These combined factors can affect genetic diversity and population structure of aquatic organisms in the Everglades. We analyzed allelic variation at six DNA microsatellite loci to examine the population structure of spotted sunfish (Lepomis punctatus) from the Everglades. We tested the hypothesis that recurrent local extinction and recent regional divisions have had an effect on patterns of genetic diversity. No marked differences were observed in comparisons of the heterozygosity values of sites within and among water management units. No evidence of isolation by distance was detected in a gene flow and distance correlation between subpopulations. Confidence intervals for the estimated F-statistic values crossed zero, indicating that there was no significant genetic difference between subpopulations within a region or between regions. Notably, the genetic variation among subpopulations in a water conservation area was greater than variation among regions (Fsp>FPT). These data indicate that the spatial scale of recolonization following local extinction appears to be most important within water management units.
Resumo:
Microsatellite markers were developed for Cannabis sativa L. (marijuana) to estimate the level of polymorphism, usefulness for DNA typing (genotype identification), and to measure the genetic relationships between the different plants. Twelve different oligonucleotide probes were used to screen an enriched microsatellite library of Cannabis sativa in which 49% of the clones contained microsatellite sequences. Characterization of microsatellite loci in Cannabis revealed that GA/CT was the most abundant class of isolated microsatellites representing 50% overall. Eleven polymorphic SSR markers were developed, derived from dinucleotide motifs and eight from trinucleotide motifs. A total of 52 alleles were detected averaging 4.7 alleles/locus. The expected heterozygosity of the eleven loci ranged between 0.368 and 0.710 and the common probability of identical genotypes was 1.8 x 107. The loci identified 27 unique profiles of the 41 Cannabis samples. The eleven microsatellite markers developed in this study were found to be useful for DNA fingerprinting and for assessing genetic relationships in Cannabis.
Resumo:
Funding This work was supported by the HADEEP projects, funded by the Nippon Foundation, Japan (2009765188), the Natural Environmental Research Council, UK (NE/E007171/1) and the Total Foundation, France. We acknowledge additional support from the Marine Alliance for Science and Technology for Scotland (MASTS) funded by the Scottish Funding Council (Ref: HR09011) and contributing institutions. We also acknowledge support from the Leverhulme Trust to SBP. Additional sea time was supported by NIWA’s ‘Impact of Resource Use on Vulnerable Deep-Sea Communities’ project (CO1_0906)
Resumo:
[EN] We describe 12 new polymorphic dinucleotide microsatellite loci and multiplex Polymerase Chain Reaction conditions from the loggerhead sea turtle Caretta caretta. Levels of polymorphism were assessed in 50 individuals from the nesting population of the Cape Verde Islands.
Resumo:
Thirty-four microsatellite loci were isolated from three reef fish species; golden snapper Lutjanus johnii, blackspotted croaker Protonibea diacanthus and grass emperor Lethrinus laticaudis using a next generation sequencing approach. Both IonTorrent single reads and Illumina MiSeq paired-end reads were used, with the latter demonstrating a higher quality of reads than the IonTorrent. From the 1–1.5 million raw reads per species, we successfully obtained 10–13 polymorphic loci for each species, which satisfied stringent design criteria. We developed multiplex panels for the amplification of the golden snapper and the blackspotted croaker loci, as well as post-amplification pooling panels for the grass emperor loci. The microsatellites characterized in this work were tested across three locations of northern Australia. The microsatellites we developed can detect population differentiation across northern Australia and may be used for genetic structure studies and stock identification.
Resumo:
The flat oyster Ostrea edulis is native to Europe and populations have been severely depleted by the parasite Bonamia ostreae since the 1980s. Additional genetic markers are required to improve population genetics study and linkage map development for selection for B. ostrea-resistance in this species. Here, we characterized 27 novel microsatellite loci for O. edulis. Number of alleles per locus ranged from 6 to 25 and observed heterozygosity between 0.375 and 1. Null alleles were suggested at a few loci but most loci were in Hardy-Weinberg agreement enabling their reliable use in further population and mapping genetics approaches.
Resumo:
Pinna nobilis is an endemic bivalve of the Mediterranean Sea whose populations have decreased in the last decades due to human pressure; as a consequence, it was declared a protected species in 1992. Despite its conservation status, few genetic studies using mitochondrial markers have been published. We report on the isolation and development of 10 microsatellite loci for the fan mussel, Pinna nobilis. All loci (2 di-nucleotide, 5 tri-nucleotide, 2 tetra-nucleotide and 1 penta-nucleotide) are characterized by high levels of polymorphism in 76 individuals tested from two populations in the Balearic Islands (Spain, Western Mediterranean Sea). The number of alleles ranged from 4 to 24 and expected heterozygosity ranged from 0.4269 to 0.9400. These microsatellites could be very useful for the assessment of the genetic diversity and connectivity patterns of P. nobilis and the establishment of new conservation strategies.
Resumo:
Sexual selection theory predicts that, in organisms with reversed sex roles, more polyandrous species exhibit higher levels of sexual dimorphism. In the family Syngnathidae (pipefish, seahorses, and seadragons), males provide all parental care by carrying developing embryos on their ventral surfaces, and females develop secondary sex characters. Syngnathids exhibit a variety of genetic mating patterns, making them an ideal group to test predictions of sexual selection theory. Here, we describe the mating system of the black-striped pipefish Syngnathus abaster, using 4 highly variable microsatellites to analyze parentage of 102 embryos. Results revealed that 1) both sexes mate multiple times over the course of a pregnancy (polygynandrous mating system), 2) eggs are spatially segregated by maternity within each brood pouch, and 3) larger females have higher mating success (Kolmogorov–Smirnov test; P < 0.05). Together with similar studies of other syngnathid species, our results support the hypothesis that the mating system is related to the intensity of sexual dimorphism.
Resumo:
Bubo bubo is the largest owl in the world, showing a wide geographical distribution throughout the Palaearctic region. It underwent a demographic decline in many European countries during the last century and was considered “vulnerable” (Annex II of the CITES). Nowadays, it is classified as “Least Concern” according to IUCN. Despite its ecological importance and conservation status, few polymorphic molecular markers are available to study its diversity and population genetics. We report on the isolation and development of 10 new microsatellites for the Eagle owl, B. bubo. All loci (10 tetra-nucleotide) are characterized by high polymorphism levels. Number of alleles ranged from 5 to 13 and expected heterozygosity varied from 0.733 to 0.840. These microsatellites would be very useful to assess the genetic diversity, connectivity patterns and parentage of B. bubo. This information will allow to establish new conservation strategies and improve the management of the species.