940 resultados para MASS-TRANSFER KINETICS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The steady laminar compressible boundary layer flow of an electrically conducting fluid in the stagnation region of a sphere with an applied magnetic field has been studied. The effects of the induced magnetic field, mass transfer, and viscous dissipation have been taken into account. Both isothermal and adiabatic wall conditions have been considered. The governing equations have been solved numerically using a shooting method. The skin friction and heat transfer are found to be strongly affected by the magnetic field, mass transfer, wall temperature and Mach number. It is found that the magnetic field reduces the heat transfer. This is a significant result which can be used in controlling the heat transfer rate. The boundary layer solutions break down as the magnetic parameter tends to a certain critical value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of the study was to investigate the effects of the nature of solvent and polymer concentration on the mass-transfer coefficients in desorption of solvents and to develop a correlation to predict them. Desorption was experimentally studied in a Lewis cell with concentrated binary solutions of polymer in good and poor solvents. The range of parameters covered are polymer weight fraction between 0.25 and 0.6, Reynolds number between 3 and 100; Schmidt number between 1.4 X lo6 and 2.5 X lo8, and Sherwood number between 3.5 X lo2 and 1.2 X lo4. Desorption from moderately concentrated solutions (polymer weight fraction -0.25) is gas-phase controlled. Studies with more concentrated solutions showed that the effects of solvent and concentration were such that corrections due to concentration-dependent diffusivity and viscosity as well as high flux had to be applied to the mass-transfer coefficients before they could be correlated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reaction between the various species in slag and metal phase is usually mass transfer controlled. There have been continuous efforts to increase the reaction efficiency in slag-metal system, especially during decarburization of steel to produce the ultra low carbon steel (ULCS) in secondary steelmaking. It has been found that the surface reaction is a dominant factor in the final stage of decarburization. In the initial stage, the inner site reaction is major factor in the refining process. The mixing of bath affects the later reaction. However, the former reaction (surface reaction) is affected by the plume size area at the top of the metal surface. Therefore, a computational study has been made to understand the fluid dynamics of a new secondary steelmaking process called Revolutionary Degasser Activator (REDA) to study the bath mixing and plume area. REDA process has been considered as it is claimed that this process can reduce the carbon content in steel below 10ppm in a less time than the other existing processes such as RH and Tank degasser. This study shows that both bath mixing and plume area are increased in REDA process facilitating it to give the desired carbon content in less time. Qualitative comments are made on slag-metal reaction system based on this finding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this numerical study, the unsteady laminar incompressible boundary-layer flow over a continuously stretching surface has been investigated when the velocity of the stretching surface varies arbitrarily with time. Both the nodal and the saddle point regions of flow have been considered for the analysis. Also, constant wall temperature/concentration and constant heat/mass flux at the stretching surface have been taken into account. The quasilinearisation method with an implicit finite-difference scheme is used in the nodal point region (0 less-than-or-equal-to c less-than-or-equal-to 1) where c denotes the stretching ratio. This method fails in the saddle point region (-1 less-than-or-equal-to c less-than-or-equal-to 0) due to the occurrence of reverse flow in the y-component of velocity. In order to overcome this difficulty, the method of parametric differentiation with an implicit finite-difference scheme is used, where the values at c = 0 are taken as starting values. Results have been obtained for the stretching velocities which are accelerating and decelerating with time. Results show that the skin friction, the heat transfer and the mass transfer parameters respond significantly to the time dependent stretching velocities. Suction (A > 0) is found to be an important parameter in obtaining convergent solution in the case of the saddle point region of flow. The Prandtl number and the Schmidt number strongly affect the heat and mass transfer of the diffusing species, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of temperature-dependent viscosity and Prandtl number on the unsteady laminar nonsimilar forced convection flow over two-dimensional and axisymmetric bodies has been examined where the unsteadiness and (or) nonsimilarity are (is) due to the free stream velocity, mass transfer, and transverse curvature. The partial differential equations governing the flow which involve three independent variables have been solved numerically using an implicit finite-difference scheme along with a quasilinearization technique. It is found that both the skin friction and heat transfer strongly respond to the unsteady free stream velocity distributions. The unsteadiness and injection cause the location of zero skin friction to move upstream. However, the effect of variable viscosity and Prandtl number is to move it downstream. The heat transfer is found to depend strongly on viscous dissipation, but the skin friction is little affected by it. In general, the results pertaining to variable fluid properties differ significantly, from those of constant fluid properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrolytic polymerization of caprolactam to Nylon 6 in a semibatch reactor is carried out by heating a mixture of water and caprolactam. Evaporation of volatiles caused by heating results in a pressure build-up. After the pressure reaches a predetermined value, vapors are vented to keep the pressure constant for some time, and thereafter, to lower the pressure to a value slightly above atmospheric in a preprogrammed manner. The characteristics of the polymer are determined by the chemical reactions and the vaporization of water and caprolactam. The semibatch operation has been simulated and the predictions have been compared with industria data. The observed temperature and pressure histories were predicted with a fair degree of accuracy. It was found that the predictions of the degree of polymerization however are sensitive to the vapor-liquid equilibrium relations. A comparison with an earlier model, which neglected mass transfer resistance, indicates that simulation using the VLE data of Giori and Hayes and accounting for mass transfer resistance is more reliable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mathematical model for glucose and oxygen consumption, and cell growth during fungal growth on a single solid particle is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Initially only glucose is assumed to be growth limiting and later oxygen transferred from the gas phase on to the biofilm is also assumed to be growth limiting. Glucose is found to be severely growth limiting when assumed to be the only growth limiting factor and its limiting levels far less severe when oxygen limitation is also included. The objective of the model is to gain a better understanding of the mass transfer and relative growth limiting characteristics of glucose and oxygen in fungal growth systems. The results obtained from the model proposed here will be the subject of future work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The flow and heat transfer characteristics of a second-order fluid over a vertical wedge with buoyancy forces have been analysed. The coupled nonlinear partial differential equations governing the nonsimilar mixed convection flow have been solved numerically using Keller box method. The effects of the buoyancy parameter, viscoelastic parameter, mass transfer parameter, pressure gradient parameter, Prandtl number and viscous dissipation parameter on the skin friction and heat transfer have been examined in detail. Particular cases of the present results match exactly with those available in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The enthalpy method is primarily developed for studying phase change in a multicomponent material, characterized by a continuous liquid volume fraction (phi(1)) vs temperature (T) relationship. Using the Galerkin finite element method we obtain solutions to the enthalpy formulation for phase change in 1D slabs of pure material, by assuming a superficial phase change region (linear (phi(1) vs T) around the discontinuity at the melting point. Errors between the computed and analytical solutions are evaluated for the fluxes at, and positions of, the freezing front, for different widths of the superficial phase change region and spatial discretizations with linear and quadratic basis functions. For Stefan number (St) varying between 0.1 and 10 the method is relatively insensitive to spatial discretization and widths of the superficial phase change region. Greater sensitivity is observed at St = 0.01, where the variation in the enthalpy is large. In general the width of the superficial phase change region should span at least 2-3 Gauss quadrature points for the enthalpy to be computed accurately. The method is applied to study conventional melting of slabs of frozen brine and ice. Regardless of the forms for the phi(1) vs T relationships, the thawing times were found to scale as the square of the slab thickness. The ability of the method to efficiently capture multiple thawing fronts which may originate at any spatial location within the sample, is illustrated with the microwave thawing of slabs and 2D cylinders. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oscillating flow and temperature field in an open tube subjected to cryogenic temperature at the cold end and ambient temperature at the hot end is studied numerically. The flow is driven by a time-wise sinusoidally varying pressure at the cold end. The conjugate problem takes into account the interaction of oscillatory flow with the heat conduction in the tube wall. The full set of compressible flow equations with axisymmetry assumption are solved with a pressure correction algorithm. Parametric studies are conducted with frequencies of 5-15 Hz, with one end maintained at 100 K and other end at 300 K. The flow and temperature distributions and the cooldown characteristics are obtained. The frequency and pressure amplitude have negligible effect on the time averaged Nusselt number. Pressure amplitude is an important factor determining the enthalpy flow through the solid wall. The frequency of operation has considerable effect on penetration of temperature into the tube. The density variation has strong influence on property profiles during cooldown. The present study is expected to be of interest in applications such as pulse tube refrigerators and other cryocoolers, where oscillatory flows occur in open tubes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mathematical model has been developed for the gas carburising (diffusion) process using finite volume method. The computer simulation has been carried out for an industrial gas carburising process. The model's predictions are in good agreement with industrial experimental data and with data collected from the literature. A study of various mass transfer and diffusion coefficients has been carried out in order to suggest which correlations should be used for the gas carburising process. The model has been interfaced in a Windows environment using a graphical user interface. In this way, the model is extremely user friendly. The sensitivity analysis of various parameters such as initial carbon concentration in the specimen, carbon potential of the atmosphere, temperature of the process, etc. has been carried out using the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microwave (MW) thawing of 2D frozen cylinders exposed to uniform plane waves from one face, is modeled using the effective heat capacity formulation with the MW power obtained from the electric field equations. Computations are illustrated for tylose (23% methyl cellulose gel) which melts over a range of temperatures giving rise to a mushy zone. Within the mushy region the dielectric properties are functions of the liquid volume fraction. The resulting coupled, time dependent non-linear equations are solved using the Galerkin finite element method with a fixed mesh. Our method efficiently captures the multiple connected thawed domains that arise due to the penetration of MWs in the sample. For a cylinder of diameter D, the two length scales that control the thawing dynamics are D/D-p and D/lambda(m), where D-p and lambda(m) are the penetration depth and wavelength of radiation in the sample respectively. For D/D-p, D/lambda(m) much less than 1 power absorption is uniform and thawing occurs almost simultaneously across the sample (Regime I). For D/D-p much greater than 1 thawing is seen to occur from the incident face, since the power decays exponentially into the sample (Regime III). At intermediate values, 0.2 < D/D-p, D/lambda(m) < 2.0 (Regime II) thawing occurs from the unexposed face at smaller diameters, from both faces at intermediate diameters and from the exposed and central regions at larger diameters. Average power absorption during thawing indicates a monotonic rise in Regime I and a monotonic decrease in Regime III. Local maxima in the average power observed for samples in Regime II are due to internal resonances within the sample. Thawing time increases monotonically with sample diameter and temperature gradients in the sample generally increase from Regime I to Regime III. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A three-dimensional transient mathematical model (following a fixed-grid enthalpy-based continuum formulation) is used to study the interaction of double-diffusive natural convection and non-equilibrium solidification of a binary mixture in a cubic enclosure cooled from a side. Investigations are carried out for two separate test systems, one corresponding to a typical model "metal-alloy analogue" system and other corresponding to a real metal-alloy system. Due to stronger effects of solutal buoyancy in actual metal-alloy systems than in corresponding analogues, the convective transport mechanisms for the two cases are quite different. However, in both cases, similar elements of three-dimensionality are observed in the curvature and spacing of the projected streamlines. As a result of three-dimensional convective flow patterns, a significant solute macrosegregation is observed across the transverse sections of the cavity, which cannot be captured by two-dimensional simulations. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analysis is developed to study the unsteady mixed convection flow over a vertical cone rotating in an ambient fluid with a time-dependent angular velocity in the presence of a magnetic field. The coupled nonlinear partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The local skin friction coefficients in the tangential and azimuthal directions and the local Nusselt number increase with the time when the angular velocity of the-cone increases, but the reverse trend is observed for decreasing angular velocity. However, these are not mirror reflection of each other. The magnetic field reduces the skin friction coefficient in the tangential direction and also the Nusselt number, but it increases the skin friction coefficient in the azimuthal direction. The skin friction coefficients and the Nusselt number increase with the buoyancy force.