445 resultados para MAG
Resumo:
Infection with HIV-1 results in pronounced immune suppression and susceptibility to opportunistic infections (OI). Reciprocally, OI augment HIV-1 replication. As we have shown for Mycobacterium avium complex (MAC) and Pneumocystis carinii, macrophages infected with opportunistic pathogens and within lymphoid tissues containing OI, exhibit striking levels of viral replication. To explore potential underlying mechanisms for increased HIV-1 replication associated with coinfection, blood monocytes were exposed to MAC antigens (MAg) or viable MAC and their levels of tumor necrosis factor α (TNFα) and HIV-1 coreceptors monitored. MAC enhanced TNFα production in vitro, consistent with its expression in coinfected lymph nodes. Using a polyclonal antibody to the CCR5 coreceptor that mediates viral entry of macrophage tropic HIV-1, a subset of unstimulated monocytes was shown to be CCR5-positive by fluorescence-activated cell sorter analysis. After stimulation with MAg or infection with MAC, CCR5 expression was increased at both the mRNA level and on the cell surface. Up-regulation of CCR5 by MAC was not paralleled by an increase in the T cell tropic coreceptor, CXCR4. Increases in NF-κB, TNFα, and CCR5 were consistent with the enhanced production of HIV-1 in MAg-treated adherent macrophage cultures as measured by HIV-1 p24 levels. Increased CCR5 was also detected in coinfected lymph nodes as compared with tissues with only HIV-1. The increased production of TNFα, together with elevated expression of CCR5, provide potential mechanisms for enhanced infection and replication of HIV-1 by macrophages in OI-infected cells and tissues. Consequently, treating OI may inhibit not only the OI-induced pathology, but also limit the viral burden.
Resumo:
Nerve cells depend on specific interactions with glial cells for proper function. Myelinating glial cells are thought to associate with neuronal axons, in part, via the cell-surface adhesion protein, myelin-associated glycoprotein (MAG). MAG is also thought to be a major inhibitor of neurite outgrowth (axon regeneration) in the adult central nervous system. Primary structure and in vitro function place MAG in an immunoglobulin-related family of sialic acid-binding lactins. We report that a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo, are ligands for MAG. When major brain gangliosides were adsorbed as artificial membranes on plastic microwells, only GT1b and GD1a supported cell adhesion of MAG-transfected COS-1 cells. Furthermore, a quantitatively minor ganglioside expressed on cholinergic neurons, GQ1b alpha (also known as Chol-1 alpha-b), was much more potent than GT1b or GD1a in supporting MAG-mediated cell adhesion. Adhesion to either GT1b or GQ1b alpha was abolished by pretreatment of the adsorbed gangliosides with neuraminidase. On the basis of structure-function studies of 19 test glycosphingolipids, an alpha 2,3-N-acetylneuraminic acid residue on the terminal galactose of a gangliotetraose core is necessary for MAG binding, and additional sialic acid residues linked to the other neutral core saccharides [Gal(II) and GalNAc(III)] contribute significantly to binding affinity. MAG-mediated adhesion to gangliosides was blocked by pretreatment of the MAG-transfected COS-1 cells with anti-MAG monoclonal antibody 513, which is known to inhibit oligodendrocyte-neuron binding. These data are consistent with the conclusion that MAG-mediated cell-cell interactions involve MAG-ganglioside recognition and binding.
Resumo:
Saccharomyces cerevisiae responds to DNA damage by arresting cell cycle progression (thereby preventing the replication and segregation of damaged chromosomes) and by inducing the expression of numerous genes, some of which are involved in DNA repair, DNA replication, and DNA metabolism. Induction of the S. cerevisiae 3-methyladenine DNA glycosylase repair gene (MAG) by DNA-damaging agents requires one upstream activating sequence (UAS) and two upstream repressing sequences (URS1 and URS2) in the MAG promoter. Sequences similar to the MAG URS elements are present in at least 11 other S. cerevisiae DNA repair and metabolism genes. Replication protein A (Rpa) is known as a single-stranded-DNA-binding protein that is involved in the initiation and elongation steps of DNA replication, nucleotide excision repair, and homologous recombination. We now show that the MAG URS1 and URS2 elements form similar double-stranded, sequence-specific, DNA-protein complexes and that both complexes contain Rpa. Moreover, Rpa appears to bind the MAG URS1-like elements found upstream of 11 other DNA repair and DNA metabolism genes. These results lead us to hypothesize that Rpa may be involved in the regulation of a number of DNA repair and DNA metabolism genes.
Resumo:
Aims. We investigated in detail the system WDS 19312+3607, whose primary is an active M4.5Ve star previously inferred to be young (τ ~ 300–500 Ma) based on its high X-ray luminosity. Methods. We collected intermediate- and low-resolution optical spectra taken with 2 m-class telescopes, photometric data from the B to 8 μm bands, and data for eleven astrometric epochs with a time baseline of over 56 years for the two components in the system, G 125–15 and G 125–14. Results. We derived the M4.5V spectral types of both stars, confirmed their common proper motion, estimated their heliocentric distance and projected physical separation, determined their Galactocentric space velocities, and deduced a most-probable age of older than 600 Ma. We discovered that the primary, G 125–15, is an inflated, double-lined, spectroscopic binary with a short period of photometric variability of 1.6 d, which we associated with orbital synchronisation. The observed X-ray and Hα emissions, photometric variability, and abnormal radius and effective temperature of G 125–15 AB are indicative of strong magnetic activity, possibly because of the rapid rotation. In addition, the estimated projected physical separation between G 125–15 AB and G 125–14 of about 1200 AU ensures that WDS 19312+3607 is one of the widest systems with intermediate M-type primaries. Conclusions. G 125–15 AB is a nearby (d ≈ 26 pc), bright (J ≈ 9.6 mag), active spectroscopic binary with a single proper-motion companion of the same spectral type at a wide separation. They are thus ideal targets for specific follow-ups to investigate wide and close multiplicity or stellar expansion and surface cooling because of the lower convective efficiency.
Resumo:
We report the detection of the first extrasolar planet, ET-1 (HD 102195b), using the Exoplanet Tracker (ET), a new-generation Doppler instrument. The planet orbits HD 102195, a young star with solar metallicity that may be part of the local association. The planet imparts radial velocity variability to the star with a semiamplitude of 63.4 ± 2.0 m s^-1 and a period of 4.11 days. The planetary minimum mass (m sin i) is 0.488MJ ± 0.015M_J. The planet was initially detected in the spring of 2005 with the Kitt Peak National Observatory (KPNO) 0.9 m coudé feed telescope. The detection was confirmed by radial velocity observations with the ET at the KPNO 2.1 m telescope and also at the 9 m Hobby-Eberly Telescope (HET) with its High Resolution Spectrograph. This planetary discovery with a 0.9 m telescope around a V = 8.05 magnitude star was made possible by the high throughput of the instrument: 49% measured from the fiber output to the detector. The ET's interferometer-based approach is an effective method for planet detection. In addition, the ET concept is adaptable to multiple-object Doppler observations or very high precision observations with a cross-dispersed echelle spectrograph to separate stellar fringes over a broad wavelength band. In addition to spectroscopic observations of HD 102195, we obtained brightness measurements with one of the automated photometric telescopes at Fairborn Observatory. Those observations reveal that HD 102195 is a spotted variable star with an amplitude of ~0.015 mag and a 12.3 ± 0.3 day period. This is consistent with spectroscopically observed Ca II H and K emission levels and line-broadening measurements but inconsistent with rotational modulation of surface activity as the cause of the radial velocity variability. Our photometric observations rule out transits of the planetary companion.
Resumo:
Registros isotópicos de oxigênio obtidos em alta resolução das estalagmites CL2 e MAG das cavernas Calixto e Marota, região da Chapada Diamantina (CD) (12ºS), Estado da Bahia, sul do Nordeste brasileiro (sNEB), permitiram reconstituir as mudanças passadas da precipitação entre 165-128 e 59-39 mil anos A.P. Para a reconstituição paleoclimática considerou-se resultados de um estudo de calibração realizado em duas cavernas da CD o qual demonstrou uma relação entre composição isotópica da água meteórica e de gotejamento e sugeriu um ambiente adequado para a deposição do espeleotema em condições equilíbrio e/ou próximas com a água de gotejamento. A interpretação da paleoprecipitação através dos registros isotópicos \'\'delta\' POT.18\'O das estalagmites também foi baseada na relação entre composição isotópica da água da precipitação e a quantidade de chuva obtidos em estações da IAEA-GNIP no Brasil e de simulações das variações do \'\'delta\' POT.18\'O da chuva através do modelo climático ECHAM-4. Esses dados indicaram o efeito quantidade (amount effect) como fator preponderante de controle isotópico da água da chuva que formam os espeleotemas na CD, significando que a diminuição dos valores de \'\'delta\' POT.18\'O está associada ao aumento do volume de chuvas e vice-versa. Os registros de \'\'delta\' POT.18\'O dos espeleotemas permitiram reconstituir a variação da paleoprecipitação na escala orbital e milenar durante o penúltimo glacial bem como correlacionar mudanças na paleoprecipitação no sNEB com eventos milenares registrados na Groelândia no último glacial. Os registros da CD indicaram um aumento (diminuição) da paleoprecipitação na Bahia relacionado a diminuição (aumento) da insolação austral de verão a 10ºS durante o penúltimo glacial, similar ao observado no último ciclo precessional. Na escala orbital os registros da CD estiveram em antifase com os paleoindicadores isotópicos do Sudeste brasileiro e em fase com os valores de\'\'delta\' POT.18\'O dos espeleotemas do leste da China. Esse padrão de precipitação é similar ao observado na última glaciação e sugere que a variação na insolação de verão afetou as monções sul-americanas (MSA) promovendo mudanças na precipitação no sNEB no penúltimo glacial. Condições áridas no sNEB durante o aumento da insolação de verão estariam provavelmente associadas ao aprofundamento da subsidência de ar provocado pelo fortalecimento da circulação leste-oeste da MSA devido ao aumento das atividades convectivas na Amazônia o que teria, favorecido um posicionamento mais a sul da Zona de Convergência do Atlântico Sul (ZCAS). O oposto também ocorreria durante as fases de baixa insolação de verão quando a MSA estaria provavelmente mais desintensificada. Durante o penúltimo glacial (Terminação Glacial II) abruptas oscilações nos registros da CD para valores mais baixos de \'\'delta\' POT.18\'O indicaram um profundo aumento da precipitação coincidente com o evento Heinrich (H11). Nesse período a paleoprecipitação no sNEB esteve correlacionada negativamente com as mudanças climáticas na China e no oeste amazônico (Peru) e positivamente com o Sudeste brasileiro. Interpretou-se que as anomalias positivas da precipitação no sNEB podem ter estado relacionadas ao deslocamento para sul da Zona de Convergência Intertropical (ZCIT) bem como com a intensificação da MSA e ZCAS nesse período. Finalmente, oscilações isotópicas abruptas para valores mais altos observadas durante o estágio marinho isotópico 3 coincidentes com os eventos quentes registrados na Groelândia, denominados de eventos Dansgaard-Oeschger (DO), foram interpretados como a ocorrência de eventos muito secos no sNEB. Essas variações da precipitação na escala milenar, que estão em fase com os registros no Peru, podem ter estado relacionadas ao deslocamento para norte da ZCIT o que teria promovido uma profunda desintensificação da MSA.
Resumo:
Aims. We study the optical and near-infrared colour excesses produced by circumstellar emission in a sample of Be/X-ray binaries. Our main goals are exploring whether previously published relations, valid for isolated Be stars, are applicable to Be/X-ray binaries and computing the distance to these systems after correcting for the effects of the circumstellar contamination. Methods. Simultaneous UBVRI photometry and spectra in the 3500−7000 Å spectral range were obtained for 11 optical counterparts to Be/X-ray binaries in the LMC, 5 in the SMC and 12 in the Milky Way. As a measure of the amount of circumstellar emission we used the Hα equivalent width corrected for photospheric absorption. Results. We find a linear relationship between the strength of the Hα emission line and the component of E(B − V) originating from the circumstellar disk. This relationship is valid for stars with emission lines weaker than EW ≈ −15 Å. Beyond this point, the circumstellar contribution to E(B − V) saturates at a value ≈0.17 mag. A similar relationship is found for the (V − I) near infrared colour excess, albeit with a steeper slope and saturation level. The circumstellar excess in (B − V) is found to be about five times higher for Be/X-ray binaries than for isolated Be stars with the same equivalent width EW(Hα), implying significant differences in the physical properties of their circumstellar envelopes. The distance to Be/X-ray binaries (with non-shell Be star companions) can only be correctly estimated by taking into account the excess emission in the V band produced by free-free and free-bound transitions in the circumstellar envelope. We provide a simple method to determine the distances that includes this effect.
Resumo:
Context. It has been suggested that the compact open cluster VdBH 222 is a young massive distant object. Aims. We set out to characterise VdBH 222 using a comprehensive set of multi-wavelength observations. Methods. We obtained multi-band optical (UBVR) and near-infrared (JHKS) photometry of the cluster field, as well as multi-object and long-slit optical spectroscopy for a large sample of stars in the field. We applied classical photometric analysis, as well as more sophisticated methods using the CHORIZOS code, to determine the reddening to the cluster. We then plotted dereddened HR diagrams and determined cluster parameters via isochrone fitting. Results. We have identified a large population of luminous supergiants confirmed as cluster members via radial velocity measurements. We find nine red supergiants (plus one other candidate) and two yellow supergiants. We also identify a large population of OB stars. Ten of them are bright enough to be blue supergiants. The cluster lies behind ≈7.5 mag of extinction for the preferred value of RV = 2.9. Isochrone fitting allows for a narrow range of ages between 12 and 16 Ma. The cluster radial velocity is compatible with distances of ~6 and ~10 kpc. The shorter distance is inconsistent with the age range and Galactic structure. The longer distance implies an age ≈ 12 Ma and a location not far from the position where some Galactic models place the far end of the Galactic bar. Conclusions. VdBH 222 is a young massive cluster with a likely mass >20 000 M⊙. Its population of massive evolved stars is comparable to that of large associations, such as Per OB1. Its location in the inner Galaxy, presumably close to the end of the Galactic bar, adds to the increasing evidence for vigorous star formation in the inner regions of the Milky Way.
Resumo:
Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible, different methods were used to derive raw parameters (e.g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e.g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the ρ Oph, Cha I, NGC 2264, γ Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be ≈120 K rms in Teff, ≈0.3 dex rms in log g, and ≈0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: An accurate chart of the world with the new discoveries : also a view of the general &c coasting trade winds, monsoons or shifting trade winds & the variations of the compass ; from the latest and best authorities by T. Kitchin, Geographer for the Lond. Mag. It was published ca. 1774. Scale [ca. 1:90,000,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'World Mercator' projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, trade winds, magnetic variations, shoreline features, and more. Relief shown pictorially. Includes text and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of a portion of South Africa : illustrative of Lieut. Cameron's route from lake Tangayika to the west coast, by E. G. Ravenstein, F.R.G.S. It was published by Geogr. Mag. in 1876. Scale 1:5,000,000. Covers portions of Angola, Democratic Republic of Congo, Rwanda, Burundi, Tanzania, and Zambia. The image inside the map neatline is georeferenced to the surface of the earth and fit to a non-standard 'World Sinusoidal' projection with the central meridian at 20 degrees east. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as expedition routes, drainage, cities and other human settlements, territorial boundaries, and more. Relief is shown by shading. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite+/-illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite+/-mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite+/-illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite+/-chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ~250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite+/-chlorite alteration formed at ~300°C; (2) chlorite+/-illite alteration at 235°C; (3) chlorite+/-illite and mixed layer clay alteration; and (4) chlorite+/-illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples. Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.
Resumo:
The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge.
Resumo:
The Eocene and Oligocene epochs (55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records (Zachos et al., 2001, doi:10.1126/science.1059412; Lear et al., 2000, doi:10.1126/science.287.5451.269; Coxall et al., 2005, doi:10.1038/nature03135; Pekar et al., 2005; doi:10.1130/B25486.1; Strand et al., 2003, doi:10.1016/S0031-0182(03)00396-1) supported by climate modelling (DeConto and Pollard, 2003, doi:10.1038/nature01290) indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy (Coxall et al., 2005, doi:10.1038/nature03135; Tripati et al., 2005, doi:10.1038/nature03874; Wolf-Welling et al., 1996, doi:10.2973/odp.proc.sr.151.139.1996; Moran et al., 2006, doi:10.1038/nature04800). Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented (Winkler et al., 2002, doi:10.1007/s005310100199), at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.