990 resultados para Máquinas de vapor
Resumo:
The authors report the formation of highly oriented wrinkling on the surface of the bilayer [polystyrene (PS)/poly(vinyl pyrrolidone) (PVP)] confined by a polydimethylsiloxane (PDMS) mold in a water vapor environment. When PVP is subjected to water vapor, the polymer loses its mechanical rigidity and changes to a viscous state, which leads to a dramatic change in Young's modulus. This change generates the amount of strain in the bilayer to induce the wrinkling. With a shape-controlled mold, they can get the ordered wrinkles perfectly perpendicular or leaned 45 S to the channel orientation of the mold because the orientation of the resultant force changes with the process of water diffusion which drives the surface to form the wrinkling. Additionally, they can get much smaller wrinkles than the stripe spacing of PDMS mold about one order. The wrinkle period changes with the power index of about 0.5 for various values of the multiplication product of the film thicknesses of the two layers, namely, lambda similar to (h(PS)h(PVP))(1/2).
Dewetting of polymethyl methacrylate on the patterned elastomer substrate by solvent vapor treatment
Resumo:
The dewetting evolution process of polymethyl methacrylate (PMMA) film on the flat and prepatterned polydimethylsiloxane (PDMS) substrates (with square microwells) by the saturated solvent of methyl ethyl ketone (MEK) treatment has been investigated at room temperature by the optical microscope (OM) and atomic force microscope (AFM). The final dewetting on the flat PDMS substrate led to polygonal liquid droplets, similar to that by temperature annealing. However, on the patterned PDMS substrate, depending on the microwells' structure of PDMS substrate and defect positions that initiated the rupture and dewetting of PMMA, two different kinds of dewetting phenomena, one initiated around the edge of the microwells and another initiated outside the microwells, were observed. The forming mechanism of these two different dewetting phenomena has been discussed. The microwells were filled with liquid droplets of PMMA after dewetting due to the formation of fingers caused by the pinning of the three-phase-line at the edge of the microwells and their rupture.
Resumo:
The self-assembly processes of the rod-coil diblock oligomer thin film of tetra-aniline (TANI)-block-poly(L-lactide) (PLLA) with different film thicknesses induced in the coil-selective solvent of acetone vapor at room temperature were studied. The morphologies of the oligomer films were determined by the film thickness. For the thicker film (232 nm), the nonextinct concentric ring-banded textures could form. While for the thinner and appropriate film (about 6 nm), multistacked diamond-shaped appearances with the periodic thickness being about 8.5 nm(6-nm-thick extended PLLA chain and 2.5-nm-thick p-pi conjugating TANI bimolecular layer) formed. The possible formation models of those two regular morphologies were presented in detail.
Resumo:
We have followed the time development of the microdomain structure in symmetric diblock copolymer poly(styrene-b-methyl methacrylate), P(S-b-MMA), ultrathin films via PMMA-selective solvent vapor treatment by atomic force microscopy (AFM). After preparation on a substrate preferentially attracting the PMMA block, PS forms a continuous layer at a film's free surface. With subsequent solvent vapor treatment, the film gradually shows a well-ordered hexagonally packed nanocylinders structure. It is shown that only when the film thickness is less than the 1/2L(0) (lamellar repeat spacing), and exposed to PMMA block selective solvent for an appropriate time, can the well-ordered hexagonally packed nanocylinders form. On an extended solvent vapor treatment, a mixed morphology containing nanocylinders and stripes appears, followed by the striped morphologies. When the annealing time is long enough, the film comes back to the flat surface again, however, with PMMA instead of PS dominating the free surface.
Resumo:
Mixtures of methanol/MTBE were separated with polyimide/sulfonated poly(ether-sulfone) hollow-fiber membranes. The separation was attempted by vapor permeation instead of pervaporation, which had been used by most researchers. The separation properties of the hollow-fiber membranes and operating conditions are discussed. The results showed that separation factors of the blended polyimide/sulfonated poly(ether-sulfone) hollow-fiber membranes were extremely high for the methanol/MTBE mixtures.
Resumo:
Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (11) was then eluted with 10% HNO3 and subsequently reduced by NaBH4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min(-1) sample loading rate. The detection limit was 0.2 ng L-1 and much lower than that of conventional method (around 15.8 ng L-1). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L-1 of Hg and the linear working curve is from 20 to 2000 ng L-1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.
Resumo:
Blend modified polyimide (PI) hollow fiber membranes were used in vapor permeation for gas phase dehydration of ethanol. Dry air sweeping operation was used and the dry air was supplied by a dehumidification membrane module of compressed air. An integrated membrane process was composed. The effects of some factors, such as the modification of membrane materials, the humidity and current velocity of sweeping air, the operation temperature, on the efficiency of dehydration were discussed.
Resumo:
The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.
Resumo:
The film by tetraphenylporphyrin((TPP)H-2) vapor deposition on iron was investigated by means of XPS, SEM and visible spectroscopy. N(1s) binding energy characteristic of(TPP)H-2 was gained directly from the deposited samples. N(1s) binding energy of the surface was greatly changed after the deposited sample was washed with solvent. It is indicated that the deposited film is composed of an outer-layer of physically adsorbed (TPP)H-2, and an inner-layer of chemically modified (TPP)H-2.
Resumo:
Heteropolyacids (HPAs) supported on the activated carbon (SiW12/C and PW12/C) have been used to study the formation of methyl tert-butyl ether (MTBE). Compared to the conventional commercial catalysts, Amberlyst-15 resin and HZSM-5, HPAs supported catalysts have been proved to have much higher catalytic activity under lower temperature, especially selectivity to MTBE is up to 100%. It may be due to the high acid strength of HPAs as well as the specialty of heteropolyanion.
Resumo:
The novel polyetherethersulfone (PES-C) prepared from phenol-phthalein in our institute is an amorphous, rigid, tough material with good mechanical properties over a wide temperature range. To improve its water vapor permeability for the application of gas drying, the PES-C was sulfonated with concentrated sulfuric acid and transferred in sodium, cupric, and ferric salt forms. The sulfonation degree can be regulated by controlling the temperature and reaction time. Characterization of sulfonated PES-C in sodium form was made by IR. Some properties of the sulfonated PES-C, such as solubility, glass transition temperature, thermal stability, mechanical properties, and transport properties to nitrogen and water vapor have also been discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The vapor phase esterification of acetic acid with ethanol and n-butanol catalyzed by SiW12 supported on activated carbon was studied in a flow fixed-bed reactor in the range of 358 to 433 K. The effects of the reaction temperature, liquid hourly space velocity (LHSV) as well as the molar ratio on the catalytic activity have been investigated. The kinetic studies showed that the rate of esterification was dependent on the partial pressures of the reactants and the addition of argon, an inert diluent in the system when the total pressure was kept at 1 atm. Also the alcohol structure has a profound effect on not only the rate of esterification, but also on the mechanism of esterification changing from a dual site mechanism for ethanol to a single site mechanism for n-butanol.
Resumo:
The novel polyetheretherketone (PEK-C) prepared from phenolphthalein in our institute is an amorphous, rigid, tough material with good mechanical properties over a wide temperature range. To improve its water vapor permeability for the application of gas drying, PEK-C was sulfonated with concentrated sulfuric acid and transferred in sodium, cupric, and ferric salt forms. Sulfonation degree can be regulated by controlling the temperature and reaction time. Characterization of sulfonated PEK-C in sodium form was made by infrared spectroscopy. Some properties of the sulfonated PEK-C, such as solubility, glass transition temperature, thermal stability, mechanical properties, and transport properties to nitrogen and water vapor, are also discussed. (C) 1996 John Wiley & Sons, Inc.