867 resultados para London Museum.
Resumo:
The CTRL Contract 220 covered 7.5km twin-bore tunnels excavated between late 2002 and early 2004 from Stratford Box to St Pancras station in Central London. To ensure efficient machine operation as well as the transport and disposal of soil, soil conditioning treatments were applied. Specifically, the foam injection ratio (FIR) and the polymer injection ratio (PIR) (injected volume of foam and polymer solution expressed as a percentage of the excavated soil volume) were employed. It was found that carefully selected soil conditioning allowed chamber pressures of 200kPa or more to be accurately controlled in the stiff London Clay and to an extent, in the very stiff clays of the Lambeth Group. Average FIRs of 50% and PIRs of 7 and 9% were used in the Thanet Sand and in the Lambeth Group Clays. In contrast, much lower quantities of foam were used in the London Clay.
Resumo:
Although a wide range of techniques exist for slope monitoring, the task of monitoring slopes is sometimes complicated by the extensive nature and unpredictability of slope movements. The Brillouin optical time-domain reflectometer (BOTDR) is a distributed optical fiber strain measurement technology utilising Brillouin scattering. This method measures continuous strain along a standard optical fibre over a distance up to 10 km and hence has potential to detect deformations and diagnose problems along large sections of slopes and embankments. This paper reports the demonstration of BOTDR method for monitoring surface ground movements of clay cuttings and embankments along London's ring M25 motorway. A field trial investigating varying methods of onsite fibre optic installations was conducted. The surrounding ground was artificially moved by excavating a 3 m deep trench perpendicular to the instrumented sections. Results obtained from onsite installations after slope movement demonstrate a half-pipe covered fibre optic installed on wide (200mm) Tensar ™SS20 geogrid gives the most consistent recorded strain change profile. Initial conclusions suggest this method best represents induced ground motion at the surface and hence is recommended for implementation in future sitework. Copyright ASCE 2008.
Resumo:
As an endangered animal group, musk deer (genus Moschus) are not only a great concern of wildlife conservation, but also of special interest to evolutionary studies due to long-standing arguments on the taxonomic and phylogenetic associations in this group. Using museum samples, we sequenced complete mitochondrial cytochrome b genes (1140 bp) of all suggested species of musk deer in order to reconstruct their phylogenetic history through molecular information. Our results showed that the cytochrome b gene tree is rather robust and concurred for all the algorithms employed (parsimony, maximum likelihood, and distance methods). Further, the relative rate test indicated a constant sequence substitution rate among all the species, permitting the dating of divergence events by molecular clock. According to the molecular topology, M. moschiferus branched off the earliest from a common ancestor of musk deer (about 700,000 years ago); then followed the bifurcation forming the M. berezouskii lineage and the lineage clustering M. fuscus, M. chrysogaster, and M. leucogaster (around 370,000 years before present), interestingly the most recent speciation event in musk deer happened rather recently (140,000 years ago), which might have resulted from the diversified habitats and geographic barriers in southwest China caused by gigantic movements of the Qinghai-Tibetan Plateau in history. Combining the data of current distributions, fossil records, and molecular data of this study, we suggest that the historical dispersion of musk deer might be from north to south in China. Additionally, in our further analyses involving other pecora species, musk deer was strongly supported as a monophyletic group and a valid family in Artiodactyla, closely related to Cervidae. (C) 1999 Academic Press.
Resumo:
Energy Piles present an efficient solution for long-term carbon emission reduction and sustainable construction. However, they have received only partial acceptance by the industry, because of concerns regarding the impact of cyclic thermal changes on the serviceability of energy pile foundations. This paper investigates the applicability of the hybrid load transfer approach to load-settlement analysis of single piles behavior during thermal energy exchange processes. Back-analysis results in terms of the thermal and mechanical response of energy piles show good agreement with field test results from Lambeth College in London. © ASCE 2011.
Resumo:
Following a tunnel excavation in low-permeability soil, it is commonly observed that the ground surface continues to settle and ground loading on the tunnel lining changes, as the pore pressures in the ground approach a new equilibrium condition. The monitored ground response following the tunnelling under St James's Park, London, shows that the mechanism of subsurface deformation is composed of three different zones: swelling, consolidation and rigid body movement. The swelling took place in a confined zone above the tunnel crown, extending vertically to approximately 5 m above it. On the sides of the tunnel, the consolidation of the soil occurred in the zone primarily within the tunnel horizon, from the shoulder to just beneath the invert, and extending laterally to a large offset from the tunnel centreline. Above these swelling and consolidation zones the soil moved downward as a rigid body. In this study, soil-fluid coupled three-dimensional finite element analyses were performed to simulate the mechanism of long-term ground response monitored at St James's Park. An advanced critical state soil model, which can simulate the behaviour of London Clay in both drained and undrained conditions, was adopted for the analyses. The analysis results are discussed and compared with the field monitoring data. It is found that the observed mechanism of long-term subsurface ground and tunnel lining response at St James's Park can be simulated accurately only when stiffness anisotropy, the variation of permeability between different units within the London Clay and non-uniform drainage conditions for the tunnel lining are considered. This has important implications for future prediction of the long-term behaviour of tunnels in clays.