954 resultados para Liquid crystalline systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formulations containing poloxamer 407 (P407), carbopol 934P (C934P), and propolis extract (PE) were designed for the treatment of periodontal disease. Gelation temperature, in vitro drug release, rheology, hardness, compressibility, adhesiveness, mucoadhesion, and syringeability of formulations were determined. Propolis release from formulations was controlled by the phenomenon of relaxation of polymer chains. Formulations exhibited pseudoplastic flow and low degrees of thixotropy or rheopexy. In most samples, increasing the concentration of C934P content significantly increased storage modulus (G'), loss modulus (G ''), and dynamic viscosity (n') at 5 degrees C, G '' exceeded G'. At 25 and 37 degrees C, n' of each formulation depended on the oscillatory frequency. Formulations showed thermoresponsive behavior, existing as a liquid at room temperature and gel at 34-37 degrees C. Increasing the C934P content or temperature significantly increased formulation hardness, compressibility, and adhesiveness. The greatest mucoadhesion was noted in the formulation containing 15% P407 (w/w) and 0.25% C934P (w/w). The work of syringeability values of all formulations were similar and very desirable with regard to ease of administration. The data obtained in these formulations indicate a potentially useful role in the treatment of periodontitis and suggest they are worthy of clinical evaluation. (c) 2007 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water still represents, on its critical properties and phase transitions, a problem of current scientific interest, as a consequence of the countless open questions and of the inadequacy of the existent theoretical models, mainly related to the different solid and liquid phases that this substance possesses. For example, there are 13 known crystalline forms of water, and also amorphous phases. One of them, the amorphous ice of very high density (VHDA), was just recently observed. Other example is the anomalous behavior in the macroscopic density, which presents a maximum at the temperature of 277 K. In order to experimentally investigate the behavior of one of the liquid-solid phase transitions, the anomaly in its density and also the metastability, we used three different cooling techniques and, as comparison systems, we made use of the solvents: acetone and ethyl alcohol. The first studied cooling system employ a Peltier plate, a device recently developed, which makes use of small cubes made up of semiconductors to change heat among two surfaces; the second system is a commercial refrigerator, similar to the residential ones. Finally, the liquid nitrogen technique, which is used to refrigerate the samples in a container, in two ways: a very fast and other one, almost static. In those three systems, three Beckers of aluminum were used (with a volume of 80 ml, each), containing water, alcohol and acetone. They were closed and maintained at atmospheric pressure. Inside of each Becker were installed three thermocouples, disposed along the vertical axis of the Beckers, one close to the inferior surface, other to the medium level and the last one close the superior surface. A system of data acquisition was built via virtual instrumentation using as a central equipment a Data-Acquisition board. The temperature data were collected by the three thermocouples in the three Beckers, simultaneously, in function of freezing time. We will present the behavior of temperature versus freezing time for the three substances. The results show the characterization of the transitions of the liquid

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The incorporation of antibacterial agents into adhesive systems has been proposed to eliminate residual bacteria from dentine. This study used the agar diffusion method to evaluate the antibacterial activity of Clearfil Protect Bond (CPB), Clearfil SE Bond (CSEB), Clearfil Tri-S Bond (C3SB) and Xeno-III (XIII) self-etching adhesive systems, with or without light-activation, against cariogenic bacteria, and to assess the influence of human dentine on the antibacterial activity of these materials.Methods: An aliquot of 10 mu l per material (and individual components) were pipetted onto paper and dentine discs distributed in Petri dishes containing bacterial culture in BHI agar. Positive control was 0.2% chlorhexidine digluconate (CHX).Results: After incubation, the adhesive components of CPB and CSEB, liquid A of XIII and C3SB did not present antibacterial activity when applied to paper discs. The non-light-activated CPB primer + adhesive promoted the greatest inhibition of Streptococcus mutans (p < 0.05), whereas with light-activation, there was no significant difference between primer + adhesive and primer alone. For Lactobacillus acidophilus, CPB primer presented the greatest antibacterial activity in both light-activation conditions (p < 0.05). Regarding the dentine discs, only CHX promoted an inhibitory effect, though less intense than on paper discs (p < 0.05). CHX presented greater antibacterial activity against S. mutans than against L. acidophilus (p < 0.05).Conclusions: Light-activation significantly reduced the antibacterial activity of the self-etching adhesive systems; MDPB incorporation contributed to the effect of adhesive systems against cariogenic bacteria; the components eluted from the adhesive systems were not capable to diffuse through 400 mu m-thick dentine disc to exert their antibacterial activity against cariogenic bacteria. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The partition of hemoglobin, lysozyme and glucose-6-phospate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na2SO4, pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present report, we review recent investigations that we have conducted on the stability of atomic condensed systems, when the two-body interaction is attractive. In particular, the dynamics that occurs in the condensate due to nonconservative terms is considered in the context of an extension of the mean-field Gross-Pitaevskii approximation. Considering the relative intensity of the nonconservative parameters, chaotic and solitonic solutions are verified. Also discussed is the possibility of a liquid-gas phase transition in the presence of positive three-body elastic collisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically study many-body excitations in three different quasi-one-dimensional (Q1D) electron systems: (i) those formed on the surface of liquid Helium; (ii) in two coupled semiconductor quantum wires; and (iii) Q1D electrons embedded in polar semiconductor-based quantum wires. Our results show intersubband coupling between higher subbands and the two lowest subbands affecting even the lower energy intersubband plasmons on the liquid Helium surface. Concerning the second system, we show a pronounced extra peak appearing in the intersubband impurity spectral function for temperatures as high as 20 K. We finally show coupled intersubband plasmon-phonon modes surviving for temperatures up to 300 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this work is to obtain micrometer sized spherical particles of silica and silica-chromium from sodium silicate. Spherical particles were prepared by sol-gel method from hydrolysis to polycondensation of aqueous sodium silicate in alcohol medium. Chromium was added to the system for some samples. Compositions and morphologies were achieved by changing the precipitation agent. X-ray diffractometry, electrophoretic mobility, infrared spectroscopy and scanning electron microscopies were carried out on these particles to identify phases, determine particle mobility, morphology, particle sizes, shapes and order at short distance. Non-crystalline silica particles with spherical shapes and micrometric size were obtained. The surface potentials of the silica particles differed from that of the silica-chromium particles. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis of zirconia microneedles by the direct nucleation of particles inside a hexagonal swollen liquid crystal (SLC) (cell parameter a = 27 nm) prepared by mixing with the proper ratio, an aqueous solution of sulfated zirconium colloids, a cationic surfactant (cetylpyridinium chloride), cychlohexane as swelling agent with an oil over water ratio of 2.5 (vol.), and 1-pentanol as cosurfactant. After a slow crystallogenesis that can be enhanced by an initial induction step under moderate temperature, particles in the centimeter range can be obtained, with a very high shape ratio (over 100). These particles are made of crystalline octahydrate zirconium oxychloride containing pores of 20 nm diameter, aligned along the main axis of the liquid crystal, as the fingerprint of the oil cylinders present in the hexagonal phase. The morphology of these particles confirms that the shaping mechanism is based on true liquid crystal templating (TLCT). Further thermal treatment of these particles, after extraction from the SLC, leads to the crystallization of zirconia with the same needlelike morphology as the zirconium oxychloride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several clean-up procedures which included the use of glass chromatography columns (silica gel, alumina, Florisil, silanized Celite-charcoal), Sep-Pak cartridges and standard solutions were compared for the determination of the following N-methylcarbamate (NMC) insecticides: aldicarb, carbaryl, carbofuran, methomyl and propoxur. According to recovery results of the compounds after elution in a glass column, the most efficient systems employed 4.6% deactivated alumina and a silanized Celite-charcoal (4:1) as adsorbents, using dichloromethane-methanol (99:1) and toluene-acetonitrile (75:25) mixtures, respectively, as binary eluents. The recoveries of the compounds studied varied from 84 to 120%. Comparable recoveries (75-100%) for Sep-Pak cartridges in normal phase (NH2, CN) and reversed phase (C-8) were observed. Different temperatures were tested during the concentration step in a rotary evaporator, and we verified a strong influence of this parameter on the stability of some compounds, such as carbofuran and carbaryl. Recovery studies employing the best clean up procedures were performed at the Brazilian agricultural level in potato and carrot samples; Validation methodology of the US Food and Drug Administration was adapted for the N-methylcarbamate analysis. Their recoveries ranged between 79 and 93% with coefficients of variation of 2.3-8%. (C) 1998 Elsevier B.V. B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica xerogels were prepared from sonohydrolysis of tetraethoxysilane and exchange of the liquid phase of the wet gel by acetone. Monolithic xerogels were obtained by slow evaporation of acetone. The structural characteristics of the xerogels were studied as a function of temperature up to 1100 degrees C by means of bulk and skeletal density measurements, linear shrinkage measurements and thermal analyses (DTA, TG and DL). The results were correlated with the evolution in the UV-Vis absorption. Particularly, the initial pore structure of the dried acetone-exchanged xerogel was studied by small-angle X-ray scattering and nitrogen adsorption. The acetone-exchanged xerogels exhibit greater porosity in the mesopore region presenting greater mean pore size (similar to 4 nm) when compared to non-exchanged xerogels. The porosity of the xerogels is practically stable in the temperature range between 200 degrees C and 800 degrees C. Evolution in the structure of the solid particles (silica network) is the predominant process upon heating up to about 400 degrees C and pore elimination is the predominant process above 900 degrees C. At 1000 degrees C the xerogels are still monolithic and retain about 5 vol.% pores. The xerogels exhibited foaming phenomenon after hold for 10 h at 1100 degrees C. This temperature is even higher than that found for foaming of non-exchanged xerogels. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C2H6+TMAE), radiator gas (C5F12+N2) and radiator liquid (C6F14). MeasUred critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.