903 resultados para Learning set
Resumo:
Tuberculosis is an infection caused mainly by Mycobacterium tuberculosis. A first-line antimycobacterial drug is pyrazinamide (PZA), which acts partially as a prodrug activated by a pyrazinamidase releasing the active agent, pyrazinoic acid (POA). As pyrazinoic acid presents some difficulty to cross the mycobacterial cell wall, and also the pyrazinamide-resistant strains do not express the pyrazinamidase, a set of pyrazinoic acid esters have been evaluated as antimycobacterial agents. In this work, a QSAR approach was applied to a set of forty-three pyrazinoates against M. tuberculosis ATCC 27294, using genetic algorithm function and partial least squares regression (WOLF 5.5 program). The independent variables selected were the Balaban index (I), calculated n-octanol/water partition coefficient (ClogP), van-der-Waals surface area, dipole moment, and stretching-energy contribution. The final QSAR model (N = 32, r(2) = 0.68, q(2) = 0.59, LOF = 0.25, and LSE = 0.19) was fully validated employing leave-N-out cross-validation and y-scrambling techniques. The test set (N = 11) presented an external prediction power of 73%. In conclusion, the QSAR model generated can be used as a valuable tool to optimize the activity of future pyrazinoic acid esters in the designing of new antituberculosis agents.
Resumo:
Histamine is an important biogenic amine, which acts with a group of four G-protein coupled receptors (GPCRs), namely H(1) to H(4) (H(1)R - H(4)R) receptors. The actions of histamine at H(4)R are related to immunological and inflammatory processes, particularly in pathophysiology of asthma, and H(4)R ligands having antagonistic properties could be helpful as antiinflammatory agents. In this work, molecular modeling and QSAR studies of a set of 30 compounds, indole and benzimidazole derivatives, as H(4)R antagonists were performed. The QSAR models were built and optimized using a genetic algorithm function and partial least squares regression (WOLF 5.5 program). The best QSAR model constructed with training set (N = 25) presented the following statistical measures: r (2) = 0.76, q (2) = 0.62, LOF = 0.15, and LSE = 0.07, and was validated using the LNO and y-randomization techniques. Four of five compounds of test set were well predicted by the selected QSAR model, which presented an external prediction power of 80%. These findings can be quite useful to aid the designing of new anti-H(4) compounds with improved biological response.
Resumo:
Host responses following exposure to Mycobacterium tuberculosis (TB) are complex and can significantly affect clinical outcome. These responses, which are largely mediated by complex immune mechanisms involving peripheral blood cells (PBCs) such as T-lymphocytes, NK cells and monocyte-derived macrophages, have not been fully characterized. We hypothesize that different clinical outcome following TB exposure will be uniquely reflected in host gene expression profiles, and expression profiling of PBCs can be used to discriminate between different TB infectious outcomes. In this study, microarray analysis was performed on PBCs from three TB groups (BCG-vaccinated, latent TB infection, and active TB infection) and a control healthy group. Supervised learning algorithms were used to identify signature genomic responses that differentiate among group samples. Gene Set Enrichment Analysis was used to determine sets of genes that were co-regulated. Multivariate permutation analysis (p < 0.01) gave 645 genes differentially expressed among the four groups, with both distinct and common patterns of gene expression observed for each group. A 127-probeset, representing 77 known genes, capable of accurately classifying samples into their respective groups was identified. In addition, 13 insulin-sensitive genes were found to be differentially regulated in all three TB infected groups, underscoring the functional association between insulin signaling pathway and TB infection. Published by Elsevier Ltd.
Resumo:
In this study, in vitro anti-T. cruzi activity assays of nifuroxazide (NX) analogues, such as 5-nitro-2-furfuryliden and 5-nitro-2-theniliden derivatives, were performed. A molecular modeling approach was also carried out to relate the lipophilicity potential ( LP) property and biological activity data. The majority of the NX derivatives showed increased anti-T. cruzi activity in comparison to the reference drug, benznidazole (BZN). Additionally, the 5-nitro-2-furfuryliden derivatives presented better pharmacological profile than the 5-nitro-2-theniliden analogues. The LP maps and corresponding ClogP values indicate that there is an optimum lipophilicity value, which must be observed in the design of new potential anti-T. cruzi agents. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This article examines the subject matter of learning within the context of information society, through an inquiry concerning both the reforms in education adopted in Brazil in the last thirty years and their results. It provides a revision on the explanations of school failure based on assumptions of learning problems due to cognitive and linguistic deficits. From the guidelines related with written school forms as well as the constant cultural oppression accomplished inside the school, the article claims the necessity of changing the psychological and pedagogic views that, under the label of democratic practices, determine school institutions and its daily life, by means of instrumental relations with knowledge that disregard the reading practices which are congenial to popular culture.
Resumo:
The level set method has been implemented in a computational volcanology context. New techniques are presented to solve the advection equation and the reinitialisation equation. These techniques are based upon an algorithm developed in the finite difference context, but are modified to take advantage of the robustness of the finite element method. The resulting algorithm is tested on a well documented Rayleigh–Taylor instability benchmark [19], and on an axisymmetric problem where the analytical solution is known. Finally, the algorithm is applied to a basic study of lava dome growth.
Resumo:
What do visitors want or expect from an educational leisure activity such as a visit to a museum, zoo, aquarium or other such experience? Is it to learn something or to experience learning? This paper uses the term 'learning for fun' to refer to the phenomenon in which visitors engage in a learning experience because they value and enjoy the process of learning itself. Five propositions regarding the nature of learning for fun are discussed, drawing on quantitative and qualitative data from visitors to a range of educational leisure activities. The commonalities between learning for fun and other theoretical constructs such as 'experience,' 'flow', 'intrinsic motivation', and 'curiosity' are explored. It is concluded that learning for fun is a unique and distinctive offering of educational leisure experiences, with implications for future research and experience design.
Resumo:
When English-learning children begin using words the majority of their early utterances (around 80%) are nouns. Compared to nouns, there is a paucity of verbs or non-verb relational words, such as 'up' meaning 'pick me up'. The primary explanations to account for these differences in use either argue in support of a 'cognitive account', which claims that verbs entail more cognitive complexity than nouns, or they provide evidence challenging this account. In this paper I propose an additional explanation for children's noun/verb asymmetry. Presenting a 'multi-modal account' of word-learning based on children's gesture and word combinations, I show that at the one-word stage English-learning children use gestures to express verb-like elements which leaves their words free to express noun-like elements.
Resumo:
Student attitudes towards a subject affect their learning. For students in physics service courses, relevance is emphasised by vocational applications. A similar strategy is being used for students who aspire to continued study of physics, in an introduction to fundamental skills in experimental physics – the concepts, computational tools and practical skills involved in appropriately obtaining and interpreting measurement data. An educational module is being developed that aims to enhance the student experience by embedding learning of these skills in the practicing physicist’s activity of doing an experiment (gravity estimation using a rolling pendulum). The group concentrates on particular skills prompted by challenges such as: • How can we get an answer to our question? • How good is our answer? • How can it be improved? This explicitly provides students the opportunity to consider and construct their own ideas. It gives them time to discuss, digest and practise without undue stress, thereby assisting them to internalise core skills. Design of the learning activity is approached in an iterative manner, via theoretical and practical considerations, with input from a range of teaching staff, and subject to trials of prototypes.
Resumo:
A combination of deductive reasoning, clustering, and inductive learning is given as an example of a hybrid system for exploratory data analysis. Visualization is replaced by a dialogue with the data.
Resumo:
Many images consist of two or more 'phases', where a phase is a collection of homogeneous zones. For example, the phases may represent the presence of different sulphides in an ore sample. Frequently, these phases exhibit very little structure, though all connected components of a given phase may be similar in some sense. As a consequence, random set models are commonly used to model such images. The Boolean model and models derived from the Boolean model are often chosen. An alternative approach to modelling such images is to use the excursion sets of random fields to model each phase. In this paper, the properties of excursion sets will be firstly discussed in terms of modelling binary images. Ways of extending these models to multi-phase images will then be explored. A desirable feature of any model is to be able to fit it to data reasonably well. Different methods for fitting random set models based on excursion sets will be presented and some of the difficulties with these methods will be discussed.
Resumo:
Demotivation in English language learning was investigated, using Vietnam as a case study, with three main foci: (i) the reasons (i.e., the demotives) underlying demotivation; (ii) the degree of influence of different demotives; and (iii) students’ experiences in overcoming demotivation. Using stimulated recall essays from 100 university students of their foreign language learning experiences, the findings indicated that demotivation was a significant issue for EFL learning, and a framework for discussing the different sources of demotives was developed. While some categories of demotives occurred more frequent than others, no category appeared to be more or less difficult to overcome. Rather, students’ awareness of the role of English language and their determination to succeed were critical factors in overcoming demotivation.
Resumo:
Our AUTC Biotechnology study (Phases 1 and 2) identified a range of areas that could benefit from a common approach by universities nationally. A national network of biotechnology educators needs to be solidified through more regular communication, biennial meetings, and development of methods for sharing effective teaching practices and industry placement strategies, for example. Our aims in this proposed study are to: a. Revisit the state of undergraduate biotechnology degree programs nationally to determine their rate of change in content, growth or shrinkage in student numbers (as the biotech industry has had its ups and downs in recent years), and sustainability within their institutions in light of career movements of key personnel, tightening budgets, and governmental funding priorities. b. Explore the feasibility of a range of initiatives to benefit university biotechnology education to determine factors such as how practical each one is, how much buy-in could be gained from potentially participating universities and industry counterparts, and how sustainable such efforts are. One of many such initiatives arising in our AUTC Biotech study was a national register of industry placements for final-year students. c. During scoping and feasibility study, to involve our colleagues who are teaching in biotechnology – and contributing disciplines. Their involvement is meant to yield not only meaningful insight into how to strengthen biotechnology teaching and learning but also to generate ‘buy-in’ on any initiatives that result from this effort.
Resumo:
A sophisticated style of mentoring has been found to be essential to support engineering student teams undertaking technically demanding, real-world problems as part of a Project-Centred Curriculum (PCC) at The University of Queensland. The term ‘triple-objective’ mentoring was coined to define mentoring that addresses not only the student’s technical goal achievement but also their time and team management. This is achieved through a number of formal mentor meetings that are informed by a confidential instrument which requires students to individually reflect on team processes prior to the meeting, and a checklist of technical requirements against which the interim student team progress and achievements are assessed. Triple-objective mentoring requires significant time input and coordination by the academic but has been shown to ensure effective student team work and learning undiminished by team dysfunction. Student feedback shows they value the process and agree that the tools developed to support the process are effective in developing and assessing team work and skills with average scores mostly above 3 on a four point scale.