569 resultados para Learning development
Resumo:
This research project strives to help the Iowa Department of Transportation (DOT) fully achieve the full benefits of pavement preservation through training on proper selection, design, and application of pavement preservation treatments. In some cases, there is a lack of training when conducting one of these steps and the objective of applying pavement preservation techniques is compromised. Extensive amounts of literature on pavement preservation exist, but a structured approach on how to train staff in selecting, designing, and applying pavement preservation techniques is lacking. The objective of this project was to develop a training-oriented learning management system to address pavement preservation treatments (chip seals, fog seals, slurry systems, and crack seals and fills) as they are dealt with during the phases of selection, design, and construction. Early in the project, it was critical to identify the staff divisions to be trained and the treatments to be included. Through several meetings with the Iowa DOT, three staff divisions were identified: maintenance staff (in charge of selection), design staff, and construction staff. In addition, the treatments listed above were identified as the focus of the study due to their common use. Through needs analysis questionnaires and meetings, the knowledge gap and training needs of the agency were identified. The training modules developed target the gap from the results of the needs analysis. The concepting (selection) training focuses on providing the tools necessary to help make proper treatment selection. The design training focuses on providing the information necessary on the treatment materials (mostly binders and aggregates) and how to make proper material selection. Finally, the construction training focuses on providing equipment calibration procedures, inspection responsibilities, and images of poor and best practices. The research showed that it is important to train each division staff (maintenance, design, and construction) separately, as each staff division has its own needs and interests. It was also preferred that each treatment was covered on an individual basis. As a result of the research, it is recommended to evaluate the performance of pavement preservation treatments pre- and post-training continuously to compare results and verify the effectiveness of the learning management system.
Resumo:
Dans le domaine de la perception, l'apprentissage est contraint par la présence d'une architecture fonctionnelle constituée d'aires corticales distribuées et très spécialisées. Dans le domaine des troubles visuels d'origine cérébrale, l'apprentissage d'un patient hémi-anopsique ou agnosique sera limité par ses capacités perceptives résiduelles, mais un déficit de reconnaissance visuelle de nature apparemment perceptive, peut également être associé à une altération des représentations en mémoire à long terme. Des réseaux neuronaux distincts pour la reconnaissance - cortex temporal - et pour la localisation des sons - cortex pariétal - ont été décrits chez l'homme. L'étude de patients cérébro-lésés confirme le rôle des indices spatiaux dans un traitement auditif explicite du « where » et dans la discrimination implicite du « what ». Cette organisation, similaire à ce qui a été décrit dans la modalité visuelle, faciliterait les apprentissages perceptifs. Plus généralement, l'apprentissage implicite fonde une grande partie de nos connaissances sur le monde en nous rendant sensible, à notre insu, aux règles et régularités de notre environnement. Il serait impliqué dans le développement cognitif, la formation des réactions émotionnelles ou encore l'apprentissage par le jeune enfant de sa langue maternelle. Le caractère inconscient de cet apprentissage est confirmé par l'étude des temps de réaction sériels de patients amnésiques dans l'acquisition d'une grammaire artificielle. Son évaluation pourrait être déterminante dans la prise en charge ré-adaptative. [In the field of perception, learning is formed by a distributed functional architecture of very specialized cortical areas. For example, capacities of learning in patients with visual deficits - hemianopia or visual agnosia - from cerebral lesions are limited by perceptual abilities. Moreover a visual deficit in link with abnormal perception may be associated with an alteration of representations in long term (semantic) memory. Furthermore, perception and memory traces rely on parallel processing. This has been recently demonstrated for human audition. Activation studies in normal subjects and psychophysical investigations in patients with focal hemispheric lesions have shown that auditory information relevant to sound recognition and that relevant to sound localisation are processed in parallel, anatomically distinct cortical networks, often referred to as the "What" and "Where" processing streams. Parallel processing may appear counterintuitive from the point of view of a unified perception of the auditory world, but there are advantages, such as rapidity of processing within a single stream, its adaptability in perceptual learning or facility of multisensory interactions. More generally, implicit learning mechanisms are responsible for the non-conscious acquisition of a great part of our knowledge about the world, using our sensitivity to the rules and regularities structuring our environment. Implicit learning is involved in cognitive development, in the generation of emotional processing and in the acquisition of natural language. Preserved implicit learning abilities have been shown in amnesic patients with paradigms like serial reaction time and artificial grammar learning tasks, confirming that implicit learning mechanisms are not sustained by the cognitive processes and the brain structures that are damaged in amnesia. In a clinical perspective, the assessment of implicit learning abilities in amnesic patients could be critical for building adapted neuropsychological rehabilitation programs.]
Resumo:
El projecte de TAV es basa en la transferència d'un sistema de vals de capacitació, i en com aquest sistema de vals és adaptable a altres països o regions. En el document s'analitzen diferents conceptes teòrics sobre la conveniència o no de la implantació d'aquest sistema. A més a més, aquest document és una guia per a les organitzacions interessades en l'adaptació del sistema de vals formatius al seu territori, mostrant els passos a seguir i oferint eines útils per aconseguir-ho.
Resumo:
There is nothing as amazing and fascinating as children learning process. Between 0 and 6 years old, a child brain develops in a waythat will never be repeated. At this age, children are eager to discover and they have great potential of active and affective life.Because of this, their learning capacity in this period is incalculable. (Jordan-Decarbo y Nelson, 2002; Wild, 1999).Pre-school Education is a unique and special stage, with self identity, which aims are:attending children as a whole,motivate them to learn,give them an affective and stable environment in which they can grow up and get to be balanced and confident people and inwhich they can relate to others, learn, enjoy and be happy.Arts, Music, Visual Arts and Drama (Gardner, 1994) can provide a framework of special, even unique, personal expression.With the aim of introducing qualitative improvements in the education of children and to ensure their emotional wellbeing, and havingnoticed that teachers had important needs and concerns as regards to diversity in their student groups, we developed a programbased on the detection of needs and concerns explained by professionals in education.This program of Grupo edebé, object of our research, is a multicultural, interdisciplinary and globalizing project the aims of which are:developing children's talent and personality,keeping their imagination and creativity and using these as a learning resource,promoting reasoning, favouring expression and communication,providing children with the tools to manage their emotions,and especially, introducing Arts as a procedure to increase learning.We wanted to start the research by studying the impact (Brice, 2003) that this last point had on the learning of five-year-old childrenschooled in multicultural environments.Therefore, the main goal of the research was the assessment of the implementation of a child education programme attending todiversity in a population of five-year-old children, specifically in the practice of procedures based on the use of Arts (music, arts andcrafts and theatre) as a vehicle or procedure for learning contents in Pre-school stage.Because children emotional welfare was a subject of our concern, and bearing in mind that the affective aspects are of vitalimportance for learning and child development (Parke and Gauvain, 2009), Grupo Edebé has also evaluated the starting, evolving andfinal impact in five-year-old children given that they finish Pre-school education at that age.
Resumo:
The purpose of this study is to answer the principal question, Do Real Books help the learning of English in P4?, and create a useful document to English teachers in Infant Education that are interested in working through stories. Previous to the development of the work, it has been necessary a research work and a theoretical documentation, performed using a literature review. This process has served to establish the basis of the study and to develop the subsequent didactic intervention. This second part of the study, the didactic intervention, contains all the information about how it was planned, carried to term and evaluated. There are three different ‘real books’ used as a reference in which the reader can see how to choose the correct story, how to adapt the text to the children, the daily planning, and how to evaluate the activities.
Resumo:
The Information Society has provided the context for the development of a new generation, known as the Millennials, who are characterized by their intensive use of technologies in everyday life. These features are changing the way of learning, prompting educational institutions to attempt to better adapt to youngneeds by incorporating technologies into education. Based on this premise, wehave reviewed the prominent reports of the integration of ICT into education atdifferent levels with the aim of evidencing how education is changing, and willchange, to meet the needs of Millennials with ICT support. The results show thatmost of the investments have simply resulted in an increase of computers andaccess to the Internet, with teachers reproducing traditional approaches to education and e-learning being seen as complementary to face-to-face education.While it would seem that the use of ICT is not revolutionizing learning, it isfacilitating the personalization, collaboration and ubiquity of learning.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
The Iowa Department of Education (DE) was appropriated $1.45 million for the development and implementation of a statewide work-based learning intermediary network. This funding was awarded on a competitive basis to 15 regional intermediary networks. Funds received by the regional intermediary networks from the state through this grant are to be used to develop and expand work-based learning opportunities within each region. A match of resources equal to 25 percent was a requirement of the funding. This match could include private donations, in-kind contributions, or public moneys. Funds may be used to support personnel responsible for the implementation of the intermediary network program components.
Resumo:
This communication is part of a larger teaching innovation project financed by the University ofBarcelona, whose objective is to develop and evaluate transversal competences of the UB, learningability and responsibility. The competence is divided into several sub-competencies being the ability toanalyze and synthesis the most intensely worked in the first year. The work presented here part fromthe results obtained in phase 1 and 2 previously implemented in other subjects (Mathematics andHistory) in the first year of the degree of Business Administration Degree. In these subjects’ previousexperiences there were deficiencies in the acquisition of learning skills by the students. The work inthe subject of Mathematics facilitated that students become aware of the deficit. The work on thesubject of History insisted on developing readings schemes and with the practical exercises wassought to go deeply in the development of this competence.The third phase presented here is developed in the framework of the second year degree, in the WorldEconomy subject. The objective of this phase is the development and evaluation of the same crosscompetence of the previous phases, from a practice that includes both, quantitative analysis andcritical reflection. Specifically the practice focuses on the study of the dynamic relationship betweeneconomic growth and the dynamics in the distribution of wealth. The activity design as well as theselection of materials to make it, has been directed to address gaps in the ability to analyze andsynthesize detected in the subjects of the first year in the previous phases of the project.The realization of the practical case is considered adequate methodology to improve the acquisition ofcompetence of the students, then it is also proposed how to evaluate the acquisition of suchcompetence. The practice is evaluated based on a rubric developed in the framework of the projectobjectives. Thus at the end of phase 3 we can analyze the process that have followed the students,detect where they have had major difficulties and identify those aspects of teaching that can help toimprove the acquisition of skills by the students. The interest of this phase resides in the possibility tovalue whether tracing of learning through competences, organized in a collaborative way, is a goodtool to develop the acquisition of these skills and facilitate their evaluation.
Resumo:
In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
La asignatura troncal “Evaluación Psicológica” de los estudios de Psicología y delestudio de grado “Desarrollo humano en la sociedad de la información” de laUniversidad de Girona consta de 12 créditos según la Ley Orgánica de Universidades.Hasta el año académico 2004-05 el trabajo no presencial del alumno consistía en larealización de una evaluación psicológica que se entregaba por escrito a final de curso yde la cual el estudiante obtenía una calificación y revisión si se solicitaba. En el caminohacia el Espacio Europeo de Educación Superior, esta asignatura consta de 9 créditosque equivalen a un total de 255 horas de trabajo presencial y no presencial delestudiante. En los años académicos 2005-06 y 2006-07 se ha creado una guía de trabajopara la gestión de la actividad no presencial con el objetivo de alcanzar aprendizajes anivel de aplicación y solución de problemas/pensamiento crítico (Bloom, 1975)siguiendo las recomendaciones de la Agencia para la Calidad del Sistema Universitariode Cataluña (2005). La guía incorpora: los objetivos de aprendizaje, los criterios deevaluación, la descripción de las actividades, el cronograma semanal de trabajos paratodo el curso, la especificación de las tutorías programadas para la revisión de losdiversos pasos del proceso de evaluación psicológica y el uso del foro para elconocimiento, análisis y crítica constructiva de las evaluaciones realizadas por loscompañeros
Resumo:
The traditional model of learning based on knowledge transfer doesn't promote the acquisition of information-related competencies and development of autonomous learning. More needs to be done to embrace learner-centred approaches, based on constructivism, collaboration and co-operation. This new learning paradigm is aligned with the European Higher Education Area (EHEA) requirements. In this sense, a learning experience based in faculty' librarian collaboration was seen as the best option for promoting student engagement and also a way to increase information-related competences in Open University of Catalonia (UOC) academic context. This case study outlines the benefits of teacher-librarian collaboration in terms of pedagogy innovation, resources management and introduction of open educational resources (OER) in virtual classrooms, Information literacy (IL) training and use of 2.0 tools in teaching. Our faculty-librarian's collaboration aims to provide an example of technology-enhanced learning and demonstrate how working together improves the quality and relevance of educational resources in UOC's virtual classrooms. Under this new approach, while teachers change their role from instructors to facilitators of the learning process and extend their reach to students, libraries acquire an important presence in the academic learning communities.
Resumo:
This article reports on a project at the Universitat Oberta de Catalunya (UOC: The Open University of Catalonia, Barcelona) to develop an innovative package of hypermedia-based learning materials for a new course entitled 'Current Issues in Marketing'. The UOC is a distance university entirely based on a virtual campus. The learning materials project was undertaken in order to benefit from the advantages which new communication technologies offer to the teaching of marketing in distance education. The article reviews the main issues involved in incorporating new technologies in learning materials, the development of the learning materials, and their functioning within the hypermedia based virtual campus of the UOC. An empirical study is then carried out in order to evaluate the attitudes of students to the project. Finally, suggestions for improving similar projects in the future are put forward.
Resumo:
Peer-reviewed