951 resultados para Latent Membrane-protein
Resumo:
Current intakes of very long chain omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DNA) are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids too. Very long chain w-3 fatty acids are readily incorporated from capsules into transport, functional, and storage pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, eicosanoid generation, cell signaling and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology, and the way cells and tissues respond to external signals. In most cases, the effects seen are compatible with improvements in disease biomarker profiles or in health-related outcomes. As a result, very long chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long chain omega-3 fatty acids protect against cardiovascular morbidity and mortality, and might be beneficial in rheumatoid arthritis, inflammatory bowel diseases, childhood learning, and behavior, and adult psychiatric and neurodegenerative illnesses. DHA has an important structural role in the eye and brain, and its supply early in life is known to be of vital importance. On the basis of the recognized health improvements brought about by long chain omega-3 fatty acids, recommendations have been made to increase their intake. (C) 2009 International Union of Biochemistry and Molecular Biology, Inc. Volume 35, Number 3, May/June 2009, Pages 266-272. E-mail: pcc@soton.ac.uk
Resumo:
Background: The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 similar to 15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A(2A)R) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results: Bioreactor cultures yielded an approximately five times increase in cell density (OD600 similar to 75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A(2A)R, and therefore more suitable for further functional and structural studies. Conclusion: Large-scale expression of the A(2A)R in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.
Resumo:
A polymerase chain reaction (PCR) assay was developed to detect Chlamydia psittaci DNA in faeces and tissue samples from avian species. Primers were designed to amplify a 264 bp product derived from part of the 5' non-translated region and part of the coding region of the ompA gene which encodes the major outer membrane protein. Amplified sequences were confirmed by Southern hybridization using an internal probe. The sensitivity of the combined assay was found to be between 60 to 600 fg of chlamydial DNA (approximately 6 to 60 genome copies). The specificity of the assay was confirmed since PCR product was not obtained from samples containing several serotypes of C. trachomatis, strains of C. pneumoniae, the type strain of C. pecorum, nor from samples containing microorganisms commonly found in the avian gut flora. In this study, 404 avian faeces and 141 avian tissue samples received by the Central Veterinary Laboratory over a 6 month period were analysed by PCR, antigen detection ELISA and where possible, cell culture isolation. PCR performed favourably compared with ELISA and cell culture, or with ELISA alone. The PCR assay was especially suited to the detection of C. psittaci DNA in avian faeces samples. The test was also useful when applied to tissue samples from small contact birds associated with a case of human psittacosis where ELISA results were negative and chlamydial isolation was a less favourable method due to the need for rapid diagnosis.
Resumo:
In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfect ants, and various growth conditions did not. Increased antibiotic resistance was observed upon salicylate induction, although this was shown to be by both mar-dependent and mar-independent pathways. Cyclohexane resistance, however, was induced by salicylate by a mar-dependent pathway. Complementation studies with a plasmid that constitutively expressed marA confirmed the involvement of map in Salmonella with low-level antibiotic resistance and cyclohexane resistance, although the involvement of mar in down regulation of OmpF was unclear. However, marA overexpression did increase the expression of a ca. 50-kDa protein, but its identity remains to be elucidated Passage of the marA::gfp reporter mutant with increasing levels of tetracycline, a method reported to select for mar mutants in Escherichia coli, led to both multiple-antibiotic and cyclohexane resistance. Collectively, these data indicate that low-level antibiotic resistance, cyclohexane resistance, and modulation of OMPs in Salmonella, as in E. coli, can occur in both a mar-dependent and mar-independent manner.
Resumo:
Chromosomally encoded systems involved in low level resistance of bacteria to different classes of antibiotics (mainly beta-lactams, chloramphenicol, quinolones and tetracycline), disinfectants and in resistance to organic solvents have been the focus of considerable interest in recent years. The multiple antibiotic resistance (mar) locus of Escherichia coli and Salmonella is perhaps the best described system involved in this type of resistance which is induced by MarA, the activator protein encoded by the marRAB locus. The mar-locus is reported to mediate resistance primarily by up-regulating efflux of some antibiotics, disinfectants and organic solvents via the AcrAB-TolC efflux pump and down regulating influx through Outer Membrane Protein F (OmpF). Whilst the level of antibiotic resistance conferred by marRAB is only low level, there are increasing data to suggest that marRAB and related systems are important in clinical antibiotic resistance, possibly as a 'stepping stone' to higher levels of resistance. Other related systems include up-regulation of RobA, SoxS and AcrAB which give rise to a similar resistance phenotype to that conferred by up-regulation of MarA. The aim of this paper is to review the function and significance of the mar-locus and related systems with a particular focus on its implications in veterinary medicine. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Intimin, an outer membrane protein encoded by eaeA, is a key determinant for the formation of attaching and effacing (AE) lesions by enterohaemorrhagic Escherichia coli (EHEC). To investigate the role of intimin in adherence, the eaeA gene was insertionally inactivated in three EHEC O157:H7 strains of diverse origin. The absence or presence of intimin did not correlate with the extent of adhesion of mutant or wild-type O157:H7 in tissue culture and neonatal calf gut tissue explant adherence assays. Adherence of the eaeA mutants to HEp-2 cells was diffuse with no evidence of intimate attachment whereas wild-type bacteria formed microcolonies and AE lesions. Intimin-independent adherence to neonatal calf gut explants was demonstrated by eaeA mutants and wild-type strains which adhered in the greatest numbers to colon but least well to rumen tissue. These results confirm that intimin is necessary for intimate attachment and that additional adherence factors are involved in intimin-independent adherence.
Resumo:
Treponema have been implicated recently in the pathogenesis of digital dermatitis (DID) and contagious ovine digital dermatitis (CODD) that are infectious diseases of bovine and ovine foot tissues, respectively. Previous analyses of treponemal 16S rDNA sequences, PCR-amplified directly from DID or CODD lesions, have suggested relatedness of animal Treponema to some human oral Treponema species isolated from periodontal tissues. In this study a range of adhesion and virulence-related properties of three animal Treponema isolates have been compared with representative human oral strains of Treponema denticola and Treponema vincentii. In adhesion assays using biotinylated treponemal cells, T denticola cells bound in consistently higher numbers to fibronectin, laminin, collagen type 1, gelatin, keratin and lactoferrin than did T. vincentii or animal Treponema isolates. However, animal DID strains adhered to fibrinogen at equivalent or greater levels than T denticola. All Treponema strains bound to the amino-terminal heparin l/fibrin I domain of fibronectin. 16S rDNA sequence analyses placed ovine strain UB1090 and bovine strain UB1467 within a cluster that was phylogenetically related to T vincentii, while ovine strain UB1466 appeared more closely related to T denticola. These observations correlated with phenotypic properties. Thus, T denticola ATCC 35405, GM-1, and Treponema UB1466 had similar outer-membrane protein profiles, produced chymotrypsin-like protease (CTLP), trypsin-like protease and high levels of proline iminopeptidase, and co-aggregated with human oral bacteria Porphyromonas gingivalis and Streptococcus crista. Conversely, T vincentii ATCC 35580, D2A-2, and animal strains UB1090 and UB1467 did not express CTLP or trypsin-like protease and did not co-aggregate with P. gingivalis or S. crista. Taken collectively, these results suggest that human oral-related Treponema have broad host specificity and that similar control or preventive strategies might be developed for human and animal Treponema-associated infections.
Resumo:
An efflux system, CmeABC, in Campylobacter jejuni was previously described, and a second efflux system, CmeDEF, has now been identified. The substrates of CmeDEF include ampicillin, ethidium bromide, acridine, sodium dodecyl sulfate (SDS), deoxycholate, triclosan, and cetrimide, but not ciprofloxacin or erythromycin. C. jejuni NCTC11168 and two efflux pump knockout strains, cmeB::Kan(r) and cmeF::Kan(r), were exposed to 0.5 to 1 mu g of ciprofloxacin/ml in agar plates. All mutants arising from NCTC11168 were resistant to ciprofloxacin but not to other agents and contained a mutation resulting in the replacement of threonine 86 with isoleucine in the quinolone resistance-determining region of GyrA. Mutants with two distinct phenotypes were selected from the efflux pump knockout strains. Mutants with the first phenotype were resistant to ciprofloxacin only and had the same substitution within GyrA as the NCTC11168-derived mutants. Irrespective of the parent strain, mutants with the second phenotype were resistant to ciprofloxacin, chloramphenicol, tetracycline, ethidium bromide, acridine orange, and SDS and had no mutation in gyrA. These mutants expressed levels of the efflux pump genes cmeB and cmeF and the major outer membrane protein gene porA similar to those expressed by the respective parent strains. No mutations were detected in cmeF or cmeB. Accumulation assays revealed that the mutants accumulated lower concentrations of drug. These data suggest the involvement of a non-CmeB or -CmeF efflux pump or reduced uptake conferring multiple-antibiotic resistance, which can be selected after exposure to a fluoroquinolone.
Resumo:
The effect of glucose on the intracellular pH (pH(i)) recovery rate (dpH(i)/dt) and Na(+)-glucose transporter (SGLT) localization was investigated in HEK-293 cells, a cell line that expresses endogenous NHE1, NHE3, SGLT1, and SGLT2 proteins. The activity of the Na(+)/H(+) exchangers (NHEs) was evaluated by using fluorescence microscopy. The total and membrane protein expression levels were analyzed by immunoblotting. In cells cultivated in 5 mM glucose, the pH(i) recovery rate was 0.169 +/- A 0.020 (n = 6). This value did not change in response to the acute presence of glucose at 2 or 10 mM, but decreased with 25 mM glucose, an effect that was not observed with 25 mM mannitol. Conversely, the chronic effect of high glucose (25 mM) increased the pH(i) recovery rate (similar to 40%, P < 0.05), without changes in the total levels of NHE1, NHE3, or SGLT1 expression, but increasing the total cellular (similar to 50%, P < 0.05) and the plasma membrane (similar to 100%, P < 0.01) content of SGLT2. Treatment with H-89 (10(-6) M) prevented the stimulatory effect of chronic glucose treatment on the pH(i) recovery rate and SGLT2 expression in the plasma membrane. Our results indicate that the effect of chronic treatment with a high glucose concentration is associated with increased NHEs activity and plasma membrane expression of SGLT2 in a protein kinase A-dependent way. The present results reveal mechanisms of glucotoxicity and may contribute to understanding the diabetes-induced damage of this renal epithelial cell.
Resumo:
Introduction: Tim-3 is a Th1 lymphocytes membrane protein with inhibitory function. Its ligand, galectin-9, was recently identified and it is expressed in some lymphocyte subpopulation. In addition, endothelial cells and fibroblasts can also express galectin-9 according to the local cytokine milieu. Both molecules can act as important regulatory tools in the immune system. Aim: Evaluate the expression of these immunoregulatory molecules inside kidney allografts during acute rejection episodes. Methods: By using a quantitative polymerase chain reaction assay, we measured the levels of messenger RNA (mRNA) for galectin-9 and Tim-3 in 21 samples obtained at allograft nephrectomy. Five samples received the histological diagnosis of acute non-vascular rejection (ANVR), twelve of acute vascular rejection (AVR), and five of loss of non-immune cause (LNIC; as control). As cytolytic response markers we measured mRNA levels of granzyme B, interferon-gamma and perforin. The statistic analysis was performed using one way analysis of variance (ANOVA) and Pearson correlation. Results: The mean levels of Tim-3 mRNA expression were 13.99 +/- 6.99 for LNIC, 48.13 +/- 54.47 for RACNV and 238.63 +/- 333.14 for RAV (p = 0.004). For galectin-9, the mean values were 0.57 +/- 0.49 for LNIC, 0.66 +/- 0.36 for RACNV and 2.34 +/- 1.62 for RAV (p = 0.006). Furthermore, there was a positive correlation between both molecules (r = 0.526, p = 0.016). Also. granzyme B, perforin and interferon-gamma mRNA expression were different among the three groups. Conclusion: Messenger RNA level expressions of all the studied molecules were higher inside allografts with more severe rejection. Moreover, there was a positive correlation between galectin-9 and Tim-3 mRNA levels. The simultaneous expression of galectin-9 and Tim-3 may indicate an immunoregulatory function, during the ongoing cytotoxic response. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We describe the first application of a non-radioactive ligand-blotting technique to the characterization of proteins interacting with nematode vitellins. Chromatographically purified vitellins from the free-living nematode Oscheius tipulae were labeled with fluorescein in vitro. Ligand-blotting assays with horseradish peroxidase-conjugated anti-fluorescein antibodies showed that labeled vitellins reacted specifically with a polypeptide of approximately 100 kDa, which we named P100. This polypeptide is a specific worm`s vitellin-binding protein that is present only in adult worms. Blots containing purified O. tipulae vitellin preparations showed no detectable signal in the 100 kDa region, ruling out any possibility of yolk polypeptides self-assembling under the conditions used in our assay. Experiments done in the presence of alpha-methyl mannoside ruled out the possibility of vitellins binding to P100 through mannose residues. Triton X-114 fractionation of whole worm extracts showed that P100 is either a membrane protein or has highly hydrophobic regions. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Leptospixosis, a spirochaetal zoonotic disease caused by Leptospira, has been recognized as an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospires, where it accounts for up to 75% of the total outer membrane proteins. It is highly immunogenic, and recent studies have implicated LipL32 as an extracellular matrix binding protein, interacting with collagens, fibronectin, and laminin. In order to better understand the biological role and the structural requirements for the function of this important lipoprotein, we have determined the 2.25-angstrom-resolution structure of recombinant LipL32 protein corresponding to residues 21-272 of the wild-type protein (LipL32(21-272)). The LipL32(21-272) monomer is made of a jelly-roll fold core from which several peripheral secondary structures protrude. LipL32(21-272) is structurally similar to several other jelly-roll proteins, some of which bind calcium ions and extracellular matrix proteins. Indeed, spectroscopic data (circular dichroism, intrinsic tryptophan fluorescence, and extrinsic 1-amino-2-naphthol-4-sulfonic acid fluorescence) confirmed the calcium-binding properties of LipL32(21-272). Ca(2+) binding resulted in a significant increase in the thermal stability of the protein, and binding was specific for Ca(2+) as no structural or stability perturbations were observed for Mg(2+), Zn(2+), or Cu(2+). Careful examination of the crystal lographic structure suggests the locations of putative regions that could mediate Ca(2+) binding as well as binding to other interacting host proteins, such as collagens, fibronectin, and lamixidn. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Isolated mitochondria may undergo uncoupling, and in presence of Ca2+ at different conditions, a mitochondrial permeability transition (MPT) linked to protein,thiol oxidation, and demonstrated by CsA-sensitive mitochondrial swelling; these processes may cause cell death either by necrosis or by apoptosis. Isocoumarins isolated from the Brazilian plant Paepalanthus bromelioides (Eriocaulaceae) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin were assayed at 1-50 mu M on isolated rat liver mitochondria, for respiration, MPT, protein thiol oxidation, and interaction with the mitochondrial membrane using 1,6-diphenyl-1,3,5-hexatriene (DPH). The isocoumarins did not significantly affect state 3 respiration of succinate-energized mitochondria; they did however, stimulate 4 respiration, indicating mitochondrial uncoupling. Induction of MPT and protein thiol oxidation were assessed in succinate-energized mitochondria exposed to 10 mu M Ca2+; inhibition of these processes was assessed in non-energized organelles in the presence of 300 mu M t-butyl hydroperoxide plus 500 mu M Ca2+. Only paepalantine was an effective MPT/protein thiol oxidation inducer, also releasing cytochrome c from mitochondria; the protein thiol oxidation, unlike mitochondrial swelling, was neither inhibited by CsA nor dependent on the presence of Ca2+. Vioxanthin was an effective inhibitor of MPT/protein thiol oxidation. All isocoumarins inserted deeply into the mitochondrial membrane, but only paepalantine dimer and vioxantin decreased the membrane's fluidity. A direct reaction with mitochondrial membrane protein thiols, involving an oxidation of these groups, is proposed to account for MPT induction by paepalantine, while a restriction of oxidation of these same thiol groups imposed by the decrease of membrane fluidity, is proposed to account for MPT inhibition by vioxanthin. (c) 2006 Published by Elsevier B.V..
Resumo:
The objective of the present study was to standardize the analysis of zinc binding on human red blood cell (RBC) membranes in 20 normal adults. The displacement studies revealed that at the maximal stable zinc concentration tested (600 muM), 57% (mean) of the bound Zn-65 was displaced and to displace half maximal Zn-65, the stable zinc concentration was 300 muM. Scatchard plots revealed two classes of binding sites for zinc on RBC membranes: one with higher affinity, Kd = 1.20 x 10(-5) M (site I), and the other with lower affinity, Kd = 2.77 x 10(-4) M (site II). Binding sites occupancy was 97% means and 58.5% means for sites I and 11, respectively. The displacement was affected by temperature, membrane protein concentration, freezing, thawing, and dialysis. Other metal cations, including Co++, Fe++, and Mn++, had very little effect on Zn-65 displacement, in contrast copper displaced Zn-65 from its binding sites on RBC membranes. Zinc binding to RBC membranes was rapid and readily reversible in a dynamic equilibrium with its binding sites. It is anticipated that this method will be applicable to studies of a wide variety of diseases specifically related to zinc metabolism in humans as well as in animals. (C) 1994 Wiley-Liss, Inc.
Resumo:
The present study was undertaken to evaluate the protein composition of the sperm membranes (SM) of Nelore bulls, assessing protein markers associated with bull fertility, and whether these markers can be used for predicting bull fertility. Samples were obtained of 20 Nelore bulls, with fertility ranked and divided into three groups (greater, normal and least). To rank the bull's fertility weighted classification was used (according to the number of pregnant cows, number of AI cows and number of herds, considering three different breeding seasons), using the PROC GENMOD as a statistical model, with 99% significance. A total of 7897 Nelore cows, randomly distributed among 28 different farms, were considered in the statistical analyses. The bulls were divided into three fertility groups (pregnancy rates): greater (%F > 80), normal (79 <%F > 71) and least (< 68%F) with 3, 13 and 4 bulls, respectively. Two-dimensional gel electrophoresis (2DE) of sperm membranes indicated in 27 spots (SM40, SM53, SM69, SM93, SM102, SM111, SM137, SM138, SM189, SM196, SM201, SM202, SM204, SM225, SM236, SM237, SM239, SM241, SM246, SM247, SM275, SM283, SM342, SM346, SM355, SM372, SM391) was prevalent in the higher fertility group, and just one spot (SM244) was prevalent in the lower fertility group. Spots SM244 and SM239 had their identification defined by PMF/MALDI-MS, as BSP-A3 and aSFP, respectively. Both these proteins showed a great potential for predicting bull's fertility. The amount of aSFP was 8.5 times greater in the sperm membrane protein profile of the higher fertility groups of Nelore bulls. Besides that, the BSP-A3 was 2.5 times greater in the lower fertility group. For the other spots potentially associated with fertility not yet identified, additional tests will be necessary, but it is clear that the 2D electrophoresis of the sperm membrane can be used for a new approach to predict Nelore bull fertility. (c) 2005 Elsevier B.V. All rights reserved.