907 resultados para Laser shock peening, crack growth, residual stress
Resumo:
We discovered that a shift between the state of tumorigenicity and dormancy in human carcinoma (HEp3) is attained through regulation of the balance between two classical mitogen-activated protein kinase (MAPK)-signaling pathways, the mitogenic extracellular regulated kinase (ERK) and the apoptotic/growth suppressive stress-activated protein kinase 2 (p38MAPK), and that urokinase plasminogen activator receptor (uPAR) is an important regulator of these events. This is a novel function for uPAR whereby, when expressed at high level, it enters into frequent, activating interactions with the α5β1-integrin, which facilitates the formation of insoluble fibronectin (FN) fibrils. Activation of α5β1-integrin by uPAR generates persistently high level of active ERK necessary for tumor growth in vivo. Our results show that ERK activation is generated through a convergence of two pathways: a positive signal through uPAR-activated α5β1, which activates ERK, and a signal generated by the presence of FN fibrils that suppresses p38 activity. When fibrils are removed or their assembly is blocked, p38 activity increases. Low uPAR derivatives of HEp3 cells, which are growth arrested (dormant) in vivo, have a high p38/ERK activity ratio, but in spite of a similar level of α5β1-integrin, they do not assemble FN fibrils. However, when p38 activity is inhibited by pharmacological (SB203580) or genetic (dominant negative-p38) approaches, their ERK becomes activated, uPAR is overexpressed, α5β1-integrins are activated, and dormancy is interrupted. Restoration of these properties in dormant cells can be mimicked by a direct re-expression of uPAR through transfection with a uPAR-coding plasmid. We conclude that overexpression of uPAR and its interaction with the integrin are responsible for generating two feedback loops; one increases the ERK activity that feeds back by increasing the expression of uPAR. The second loop, through the presence of FN fibrils, suppresses p38 activity, further increasing ERK activity. Together these results indicate that uPAR and its interaction with the integrin should be considered important targets for induction of tumor dormancy.
Resumo:
Pesquisadores e indústrias de todo o mundo estão firmemente comprometidos com o propósito de fazer o processo de usinagem ser precisamente veloz e produtivo. A forte concorrência mundial gerou a procura por processos de usinagem econômicos, com grande capacidade de produção de cavacos e que produzam peças com elevada qualidade. Dentre as novas tecnologias que começaram a ser empregadas, e deve tornar-se o caminho certo a ser trilhado na busca da competitividade em curto espaço de tempo, está a tecnologia de usinagem com altas velocidades (HSM de High Speed Machining). A tecnologia HSM surge como componente essencial na otimização dos esforços para manutenção e aumento da competitividade global das empresas. Durante os últimos anos a usinagem com alta velocidade tem ganhado grande importância, sendo dada uma maior atenção ao desenvolvimento e à disponibilização no mercado de máquinas-ferramentas com rotações muito elevadas (20.000 - 100.000 rpm). O processo de usinagem com alta velocidade está sendo usado não apenas para ligas de alumínio e cobre, mas também para materiais de difícil usinabilidade, como os aços temperados e superligas à base de níquel. Porém, quando se trata de materiais de difícil corte, têm-se observado poucas publicações, principalmente no processo de torneamento. Mas, antes que a tecnologia HSM possa ser empregada de uma forma econômica, todos os componentes envolvidos no processo de usinagem, incluindo a máquina, o eixo-árvore, a ferramenta e o pessoal, precisam estar afinados com as peculiaridades deste novo processo. No que diz respeito às máquinas-ferramenta, isto significa que elas têm que satisfazer requisitos particulares de segurança. As ferramentas, devido à otimização de suas geometrias, substratos e revestimentos, contribuem para o sucesso deste processo. O presente trabalho objetiva estudar o comportamento de diversas geometrias ) de insertos de cerâmica (Al2O3 + SiCw e Al2O3 + TIC) e PCBN com duas concentrações de CBN na forma padrão, assim como modificações na geometria das arestas de corte empregadas em torneamento com alta velocidade em superligas à base de níquel (Inconel 718 e Waspaloy). Os materiais foram tratados termicamente para dureza de 44 e 40 HRC respectivamente, e usinados sob condição de corte a seco e com utilização da técnica de mínima quantidade de lubrificante (minimal quantity lubricant - MQL) visando atender requisitos ambientais. As superligas à base de níquel são conhecidas como materiais de difícil usinabilidade devido à alta dureza, alta resistência mecânica em alta temperatura, afinidade para reagir com materiais da ferramenta e baixa condutividade térmica. A usinagem de superligas afeta negativamente a integridade da peça. Por essa razão, cuidados especiais devem ser tomados para assegurar a vida da ferramenta e a integridade superficial de componentes usinados por intermédio de controle dos principais parâmetros de usinagem. Experimentos foram realizados sob diversas condições de corte e geometrias de ferramentas para avaliação dos parâmetros: força de corte, temperatura, emissão acústica e integridade superficial (rugosidade superficial, tensão residual, microdureza e microestrutura) e mecanismos de desgaste. Mediante os resultados apresentados, recomenda-se à geometria de melhor desempenho nos parâmetros citados e confirma-se a eficiência da técnica MQL. Dentre as ferramentas e geometrias testadas, a que apresentou melhor desempenho foi a ferramenta cerâmica CC650 seguida da ferramenta cerâmica CC670 ambas com formato redondo e geometria 2 (chanfro em T de 0,15 x 15º com raio de aresta de 0,03 mm).
Resumo:
Esta tese tem por objetivo a aplicação do processamento por atrito linear na liga de titânio Ti-6Al-4V. Derivado da solda por atrito linear, é um processo recente desenvolvido na década de 90 para união de alumínio. Sua aplicação em outros tipos de materiais como aços e ligas de alto desempenho, em especial o titânio, tem interessado a industria. A metodologia utilizada nesta tese para avaliar o processamento por atrito linear, consistiu na execução de ensaios mecânicos de tração em condições mistas em chapas da liga de titânio Ti-6Al-4V. A máquina utilizada para o processamento das chapas foi um centro de usinagem CNC convencional, adaptado com dispositivos especiais. Além dos ensaios de tração em condições mistas, foram executadas medições de microdurezas nas regiões atingidas pelo processo, avaliação das microestruturas resultantes e medições de tensão residual para uma caracterização mais ampla do processo. As microestruturas na região processada são caracterizadas por uma estrutura totalmente transformada. As temperaturas de pico na região processada excederam a temperatura -transus durante o processamento e a transformação da fase + ocorreu durante a fase de resfriamento. A transformação da fase para resultou na formação de agulhas de fase nos contornos e pelo interior dos grãos da fase . Pequenas regiões com estrutura equiaxial de grãos ( globular) foram observados na zona de processamento. A abordagem dos resultados quantitativos foi feita de forma estatística, visando identificar os parâmetros de maior interação com os resultados observados. Foi identificado nesta tese que a rotação da ferramenta apresentou a maior influência nos resultados de tensão residual, microdureza e tensão de escoamento. Uma importante contribuição à modelagem da tensão de escoamento para materiais anisotrópicos é proposta, baseado em um critério de escoamento ortotrópico. Equações complementares baseadas nos testes mistos de tração e cisalhamento são propostas para modificar o modelo ortotrópico. O intuito deste modelo é indicar em que condições o material tem seu regime de escoamento atingido, podendo servir de base para simulações práticas de peças em condições similares.
Resumo:
Ocular neovascularisation is the leading cause of blindness in developed countries and the most potent angiogenic factor associated with neovascularisation is vascular endothelial growth factor (VEGF). We have previously described a sense oligonucleotide (ODN-1) that possesses anti-human and rat VEGF activity. This paper describes the synthesis of lipid-lysine dendrimers and their subsequent ability to delivery ODN-1 to its target and mediate a reduction in VEGF concentration both in vitro and in vivo. Positively charged dendrimers were used to deliver ODN-1 into the nucleus of cultured D407 cells. The effects on VEGF mRNA transcription and protein expression were analysed using RT-PCR and ELISA, respectively. The most effective dendrimers in vitro were further investigated in vivo using an animal model of choroidal neovascularisation (CNV). All dendrimer/ODN-1 complexes mediated in a significant reduction in VEGF expression during an initial 24 hr period (40-60%). Several complexes maintained this level of VEGF reduction during a subsequent, second 24 hr period, which indicated protection of ODN-1 from the effects of endogenous nucleases. In addition, the transfection efficiency of dendrimers that possessed 8 positive charges (chi = 81(.)51%) was significantly better (P = 0(.)0036) than those that possessed 4 positive charges (chi = 56(.)8%). RT-PCR revealed a correlation between levels of VEGF protein mRNA. These results indicated that the most effective structural combination was three branched chains of intermediate length with 8 positive charges such as that found for dendrimer 4. Dendrimer 4 and 7/ODN-1 complexes were subsequently chosen for in vivo analysis. Fluorescein angiography demonstrated that both dendrimers significantly (P < 0(.)0001) reduced the severity of laser mediated CNV for up to two months post-injection. This study demonstrated that lipophilic, charged dendrimer mediated delivery of ODN-1 resulted in the down-regulation of in vitro VEGF expression. In addition, in vivo delivery of ODN-1 by two of the dendrimers resulted in significant inhibition of CNV in an inducible rat model. Time course studies showed that the dendrimer/ODN-1 complexes remained active for up to two months indicating the dendrimer compounds provided protection against the effects of nucleases. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The addition of small quantities (similar to 5 wt pct) layered silicates into polymer materials has the potential to greatly increase the modulus without adversely affecting the toughness or processability of the composite. The effect of microstructural features in the polymer nanocomposite and their possible effects on the mechanical properties with particular reference to linear low density polyethylene (LLDPE)/montmorillonite nanocomposites was discussed.
Resumo:
2XXX and 7XXX series aluminium alloys have been the accepted materials for airframe construction for many decades. However, only minor improvements in properties have been possible by the development of these alloys since the early 1970's. The constant need to reduce weight in aircraft has therefore led to a resurgence in the research for higher performance aluminium alloys. The reason for this investigation was to evaluate possible alternatives for the existing conventional aluminium alloy 2014 for aircraft wheel applications. Three new technologies in alloy development were considered: a metal matrix composite, an aluminium-lithium alloy and a powder metallurgical alloy. The basic mechanical properties of these advanced materials have already been established to an extent, but their fatigue behaviour has yet to be fully understood. The purpose of this work was to investigate the fatigue properties of the materials concerned, in both air and an aerated 3.5% NaCl solution, and compare these properties to 2014-T6. As well as the basic mechanical properties, fatigue crack propagation data is presented for all of the materials concerned. Additionally, fatigue crack initiation data is presented for the aluminium-lithium alloy and 2014. The D.C. electrical potential method was used to monitor crack growth. Of the materials investigated, the most promising was the aluminium-lithium alloy. However, short transverse properties need to be increased and the commercial cost of the material needs to be decreased before it can be considered as a direct replacement for 2014 for aircraft structural applications. It was considered that the cost of the powder metallurgical alloy would limit its further use. The metal matrix composite material proved to be unsuitable for most ambient temperature applications
Resumo:
The introduction of single crystal casting techniques has led to the development of existing nickel-base superalloys to produce materials with optimum mechanical properties in the single crystal condition. As single crystals are known to be anisotropic, a study is needed to determine the general mechanical properties of these materials, and determine the effects of crystal orientation upon them. A study has been carried out to identify the effect of orientation and temperature on the creep and fatigue properties of a development single crystal superalloy, SRR 99. Creep testing and crystal rotation experiments have been made on SRR 99 and an earlier development alloy, SRR 9. Fatigue experiments at elevated temperatures have been carried out on both notched and un-notched specimens of alloy SRR 99. To aid in this analysis, several analytical techniques have been employed including Laue x-ray orientation analysis, measurement of strain by photographic methods and microstructural examination. Crystal rotation experiments have indicated that shear of 1 precipitates by lbrace111rbrace< 112> slip systems is operative during primary creep deformation at temperatures of 750oC and 850oC. The effect of orientation variation obtained by standard casting practices was not found to be significant. Creep rupture was found to be associated with multiple crack initiation from micropores. Fatigue crack initiation in un-notched specimens was found to be related to microporosity and microstructural defects. Failure was predominantly by crystallographic crack growth on lbrace111rbrace planes. The use of linear elastic fracture mechanics to describe fatigue crack propagation in alloy SRR 99 was found to be acceptable at temperatures up to 850oC. Variation of temperature, frequency and crystal orientation was found to have only moderate effect upon crack propagation rates.
Resumo:
There is some evidence to suggest that nitriding of alloy steels, in particular high speed tool steels, under carefully controlled conditions might sharply increase rolling contact fatigue resistance. However, the subsurface shear stresses developed in aerospace bearing applications tend to occur at depths greater than the usual case depths currently produced by nitriding. Additionally, case development must be limited with certain materials due to case spalling and may not always be sufficient to achieve the current theoretical depths necessary to ensure that peak stresses occur within the case. It was the aim of' this work to establish suitable to overcome this problem by plasma nitriding. To assist this development a study has been made of prior hardening treatment, case development, residual stress and case cracking tendency. M2 in the underhardened, undertempered and fully hardened and tempered conditions all responded similarly to plasma nitriding - maximum surface hardening being achieved by plasma nitriding at 450°C. Case development varied linearly with increasing treatment temperature and also with the square root of the treatment time. Maximum surface hardness of M5O and Tl steels was achieved by plasma nitriding in 15% nitrogen/85% hydrogen and varied logarithmically with atmosphere nitrogen content. The case-cracking contact stress varied linearly with nitriding temperature for M2. Tl and M5O supported higher stresses after nitriding in low nitrogen plasma atmospheres. Unidirectional bending fatigue of M2 has been improved up to three times the strength of the fully hardened and tempered condition by plasma nitriding for 16hrs at 400°C. Fatigue strengths of Tl and M5O have been improved by up to 30% by plasma nitriding for 16hrs at 450°C in a 75% hydrogen/25% nitrogen atmosphere.
Resumo:
The internationally accepted Wolfson Heat Treatment Centre Engineering Group test was used to evaluate the cooling characteristics of the most popular commercial polymer quenchants: polyalkylene glycols, polyvinylpyrrolidones and polyacrylates. Prototype solutions containing poly(ethyloxazoline) were also examined. Each class of polymer was capable of providing a wide range of cooling rates depending on the product formulation, concentration, temperature, agitation, ageing and contamination. Cooling rates for synthetic quenchants were generally intermediate between those of water and oil. Control techniques, drag-out losses and response to quenching in terms of hardness and residual stress for a plain carbon steel, were also considered. A laboratory scale method for providing a controllable level of forced convection was developed. Test reproducibility was improved by positioning the preheated Wolfson probe 25mm above the geometric centre of a 25mm diameter orifice through which the quenchant was pumped at a velocity of 0.5m/s. On examination, all polymer quenchants were found to operate by the same fundamental mechanism associated with their viscosity and ability to form an insulating polymer-rich-film. The nature of this film, which formed at the vapour/liquid interface during boiling, was dependent on the polymer's solubility characteristics. High molecular weight polymers and high concentration solutions produced thicker, more stable insulating films. Agitation produced thinner more uniform films. Higher molecular weight polymers were more susceptible to degradation, and increased cooling rates, with usage. Polyvinylpyrrolidones can be cross-linked resulting in erratic performance, whilst the anionic character of polyacrylates can lead to control problems. Volatile contaminants tend to decrease the rate of cooling and salts to increase it. Drag-out increases upon raising the molecular weight of the polymer and its solution viscosity. Kinematic viscosity measurements are more effective than refractometer readings for concentration control, although a quench test is the most satisfactory process control method.
Resumo:
The work constitutes a study of the strength of mild steel fillet welds subject to static loading, and the behaviour of flange welded beam-column connections under combined bending and shear. Tests are conducted on short welds in the as-welded and stress relieved conditions, and also on full-size beam-column connections. It is shown that welds under compression have a lower strength than when under tension. Failure of the fillet weld is initiated at the weld root, the important factor controlling the initiation being weld ductility. The greater the residual stress, the lower the weld ductility and ultimate strength. Thermal stress relieving increases strength by as much as 30%. Weld failure plane is rarely at the throat and varies from 0° to 45° depending upon loading condition. Failure plane average stresses are related by a circular function which is expressed in terms of externally applied forces at limit state. The tension weld of a flange-welded beam-column connection always fails before the compression weld. The shear load sharing between the welds is a complex function of elastic compression of the web, elastic/plastic deformation of the flanges, load/deformation characteristics, and the type of load application. Bearing forces between the compression flange and column face produce low level bearing stresses and frictional forces which make a negligible contribution to shear load resistance. Three modes of connection failure are possible; 'end mode', 'bending mode' and 'shear mode', with a sudden change taking place between the two latter.
Resumo:
The isothermal fatigue behavior of a high-activity aluminide-coated single-crystal superalloy was studied in air at test temperatures of 600 °C, 800 °C, and 1000 °C. Tests were performed using cylindrical specimens under strain control at ∼0.25 Hz; total strain ranges from 0.5 to 1.6 pet were investigated. At 600 °C, crack initiation occurred at brittle coating cracks, which led to a significant reduction in fatigue life compared to the uncoated alloy. Fatigue cracks grew from the brittle coating cracks initially in a stage II manner with a subsequent transition to crystallographic stage I fatigue. At 800 °C and 1000 °C, the coating failed quickly by a fatigue process due to the drastic reduction in strength above 750 °C, the ductile-brittle transition temperature. These cracks were arrested or slowed by oxidation at the coating-substrate interface and only led to a detriment in life relative to the uncoated material for total strain ranges of 1.2 pet and above 800 °C. The presence of the coating was beneficial at 800 °C for total strain rangesless than 1.2 pet. No effect of the coating was observed at 1000 °C. Crack growth in the substrate at 800 °C was similar to 600 °C; at 1000 °C, greater plasticity and oxidationrwere observed and cracks grew exclusively in a stage II manner.
Resumo:
Knoop and Vickers indentation cracks have frequently been used as model 'precracks' in ceramic bend specimens for fracture toughness (K1c) determination. Indentation residual stress reduces the measured K1c but can be removed or accounted for by grinding, annealing, or modelling. Values of K1c are obtained for four materials using Vickers indentations and an improved stress intensity factor. Methods for residual stress removal or incorporation are compared, and the most reliable stress removal alternative is identified for each material. © 1996 The Institute of Materials.
Resumo:
Static mechanical properties of 2124 Al/SiCp MMC have been measured as a function of solution temperature and time. An optimum solution treatment has been established which produces significant improvements in static mechanical properties and fatigue crack growth resistance over conventional solution treatments. Increasing the solution treatment parameters up to the optimum values improves the mechanical properties because of intermetallic dissolution, improved solute and GPB zone strengthening and increased matrix dislocation density. Increasing the solution treatment parameters beyond the optimum values results in a rapid reduction in mechanical properties due to the formation of gas porosity and surface blisters. The optimum solution treatment improves tensile properties in the transverse orientation to a greater extent than in the longitudinal orientation and this results in reduced anisotropy. © 1996 Elsevier Science Limited.
Resumo:
This paper examines the effects of non-metallic particles on fatigue performance and, in particular, their influence on fatigue crack propagation at high ΔK (Kmax) levels. The nature and properties of a number of common non-metallic particles found in Fe- and Al- based alloys are described, and consideration is given to the consequences of mismatch of physical and chemical properties between particle and matrix. Effects of particles on fatigue in conventional alloys are illustrated and compared with the behaviour of Al/SiCp MMC. The problems associated with developing particulate reinforced MMC with adequate fatigue crack growth resistance and toughness for structural applications are discussed. © 1991.
Resumo:
This paper investigates distortions and residual stresses induced in butt joint of thin plates using Metal Inert Gas welding. A moving distributed heat source model based on Goldak's double-ellipsoid heat flux distribution is implemented in Finite Element (FE) simulation of the welding process. Thermo-elastic-plastic FE methods are applied to modelling thermal and mechanical behaviour of the welded plate during the welding process. Prediction of temperature variations, fusion zone and heat affected zone as well as longitudinal and transverse shrinkage, angular distortion, and residual stress is obtained. FE analysis results of welding distortions are compared with existing experimental and empirical predictions. The welding speed and plate thickness are shown to have considerable effects on welding distortions and residual stresses. © 2009 Elsevier Ltd. All rights reserved.