933 resultados para LDL CHOLESTEROL
Resumo:
AIMS: To investigate the long-term effects of efavirenz on cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL-C) and triglycerides (TG). METHODS: Thirty-four HIV-infected patients who commenced efavirenz therapy were monitored for 36 months. RESULTS: In patients with baseline HDL-C<40 mg.dL-1 an increase in HDL-C from 31+/-1 mg.dL-1 to 44+/-2 mg.dL-1 (95% confidence interval 5.9, 21.9, P<0.01) was observed and remained throughout the follow-up period. Median efavirenz plasma concentration was 1.98 mg.L-1 and a direct correlation between percentage of HDL-C variation or TC/HDL-C ratio and efavirenz plasma concentrations was found. CONCLUSIONS: There is evidence of a long-term and concentration-dependent beneficial effect of efavirenz on HDL-C in HIV-infected patients.
Resumo:
OBJECTIVE: To report about a group of physicians' understanding of the recommendations of the II Brazilian Guidelines Conference on Dyslipidemias, and about the state of the art of primary and secondary prevention of atherosclerosis. METHODS: Through the use of a questionnaire on dyslipidemia, atherosclerosis prevention, and recommendations for lipid targets established by the II Brazilian Guidelines Conference on Dyslipidemias, 746 physicians, 98% cardiologists, were evaluated. RESULTS:Eighty-seven percent of the respondents stated that the treatment of dyslipidemia changes the natural history of coronary disease. Although most of the participants followed the total cholesterol recommendations (<200mg/dL for atherosclerosis prevention), only 55.8% would adopt the target of LDL-C <100 mg/dL for secondary prevention. Between 30.5 and 36.7% answered, in different questions, that the recommended level for HDL-C should be <35mg/dL. Only 32.7% would treat their patients indefinitely with lipid- lowering drugs. If the drug treatment did not reach the proposed target, only 35.5% would increase the dosage, and 29.4% would change the medication. Participants did not know the targets proposed for diabetics. CONCLUSION: Although the participating physicians valued the role played by lipids in the prevention of atherosclerosis, serious deficiencies exist in their knowledge of the recommendations given during the II Brazilian Guidelines Conference on Dyslipidemias.
Resumo:
OBJECTIVE: To study the differences between fluvastatin and pravastatin regarding LDL susceptibility to oxidation, plasma levels of total cholesterol (TC), HDL-C, LDL-C and triglycerides (TG) in hypercholesterolemic patients with established coronary heart disease (CHD). METHODS: A double-blind randomized parallel study was conducted that included 41 hypercholesterolemic outpatients with CHD treated at the Instituto de Cardiologia do Rio Grande do Sul. The inclusion criteria were LDL-C above 100 mg/dL and triglycerides below 400 mg/dL based on 2 measures. After 4 weeks on a low cholesterol diet, those patients that fullfilled the inclusion criteria were randomized into 2 groups: the fluvastatin group (fluvastatin 40 mg/day) and the pravastatin group (pravastatin 20 mg/day), for 24 weeks of treatment. LDL susceptibility to oxidation was analyzed with copper-induced production of conjugated dienes (Cu2+) and water-soluble free radical initiator azo-bis (2'-2'amidinopropanil) HCl (AAPH). Spectroscopy nuclear magnetic resonance was used for determination of lipids. RESULTS: After 24 weeks of drug therapy, fluvastatin and pravastatin significantly reduced LDL susceptibility to oxidation as demonstrated by the reduced rate of oxidation (azo and Cu) and by prolonged azo-induced lag time (azo lag). The TC, LDL-C, and TG reduced significantly and HDL-C increased significantly. No differences between the drugs were observed. CONCLUSION: In hypercholesterolemic patients with CHD, both fluvastatin and pravastatin reduced LDL susceptibility to oxidation.
Resumo:
OBJECTIVE: To assess the impact of nutritional attention on the lipid profile and nutritional status of hypercholesterolemic patients attended in health centers of Belo Horizonte. METHODS: Using nutritional attendance patient record cards from two health units, the evolution of the lipid profile and the nutritional state (BMI) was monitored of 96 hypercholesterolemic patients who received diet. The patients were appraised at the following moments: initial (1st consultation), after 3 months (2nd consultation) and last consultation (variable for each patient). RESULTS: On the first attendance, 44,4% of the patients presented not only high total cholesterol and LDL-c, but also hypertriglyceridemia and 70.3% were overweight or obese, but most patients (75.6%) presented adequate HDL-c levels. There was significant reduction in the BMI, total cholesterol, LDL-c values (p < 0.01) and also in the triglyceride levels (p < 0.05) in the first three months, without alteration in the HDL-c levels. A significant reduction (p < 0.01) was observed in the frequency of individuals with high cholesterol (from 89.6% down to 47.9%), high and very high LDL-c (from 82.6% down to 45.7%), as well as high and very high triglyceride (from 43.6% down to 16.7%). The observed reduction in frequency of the low HDL-c was statistically meaningless. CONCLUSION: This study evidences the effect of the nutritional attention on lipid profile in hypercholesterolemic patients, reinforcing the need for a multiprofessional team to attend them at the public health services.
Resumo:
Background:Previous reports have inferred a linear relationship between LDL-C and changes in coronary plaque volume (CPV) measured by intravascular ultrasound. However, these publications included a small number of studies and did not explore other lipid markers.Objective:To assess the association between changes in lipid markers and regression of CPV using published data.Methods:We collected data from the control, placebo and intervention arms in studies that compared the effect of lipidlowering treatments on CPV, and from the placebo and control arms in studies that tested drugs that did not affect lipids. Baseline and final measurements of plaque volume, expressed in mm3, were extracted and the percentage changes after the interventions were calculated. Performing three linear regression analyses, we assessed the relationship between percentage and absolute changes in lipid markers and percentage variations in CPV.Results:Twenty-seven studies were selected. Correlations between percentage changes in LDL-C, non-HDL-C, and apolipoprotein B (ApoB) and percentage changes in CPV were moderate (r = 0.48, r = 0.47, and r = 0.44, respectively). Correlations between absolute differences in LDL-C, non‑HDL-C, and ApoB with percentage differences in CPV were stronger (r = 0.57, r = 0.52, and r = 0.79). The linear regression model showed a statistically significant association between a reduction in lipid markers and regression of plaque volume.Conclusion:A significant association between changes in different atherogenic particles and regression of CPV was observed. The absolute reduction in ApoB showed the strongest correlation with coronary plaque regression.
Resumo:
Sirt3 is a mitochondrial NAD(+)-dependent deacetylase that governs mitochondrial metabolism and reactive oxygen species homeostasis. Sirt3 deficiency has been reported to accelerate the development of the metabolic syndrome. However, the role of Sirt3 in atherosclerosis remains enigmatic. We aimed to investigate whether Sirt3 deficiency affects atherosclerosis, plaque vulnerability, and metabolic homeostasis. Low-density lipoprotein receptor knockout (LDLR(-/-)) and LDLR/Sirt3 double-knockout (Sirt3(-/-)LDLR(-/-)) mice were fed a high-cholesterol diet (1.25 % w/w) for 12 weeks. Atherosclerosis was assessed en face in thoraco-abdominal aortae and in cross sections of aortic roots. Sirt3 deletion led to hepatic mitochondrial protein hyperacetylation. Unexpectedly, though plasma malondialdehyde levels were elevated in Sirt3-deficient mice, Sirt3 deletion affected neither plaque burden nor features of plaque vulnerability (i.e., fibrous cap thickness and necrotic core diameter). Likewise, plaque macrophage and T cell infiltration as well as endothelial activation remained unaltered. Electron microscopy of aortic walls revealed no difference in mitochondrial microarchitecture between both groups. Interestingly, loss of Sirt3 was associated with accelerated weight gain and an impaired capacity to cope with rapid changes in nutrient supply as assessed by indirect calorimetry. Serum lipid levels and glucose tolerance were unaffected by Sirt3 deletion in LDLR(-/-) mice. Sirt3 deficiency does not affect atherosclerosis in LDLR(-/-) mice. However, Sirt3 controls systemic levels of oxidative stress, limits expedited weight gain, and allows rapid metabolic adaptation. Thus, Sirt3 may contribute to postponing cardiovascular risk factor development.
Resumo:
BACKGROUND AND OBJECTIVES: It is well established by a large number of randomized controlled trials that lowering blood pressure (BP) and low-density lipoprotein cholesterol (LDL-C) by drugs are powerful means to reduce stroke incidence, but the optimal BP and LDL-C levels to be achieved are largely uncertain. Concerning BP targets, two hypotheses are being confronted: first, the lower the BP, the better the treatment outcome, and second, the hypothesis that too low BP values are accompanied by a lower benefit and even higher risk. It is also unknown whether BP lowering and LDL-C lowering have additive beneficial effects for the primary and secondary prevention of stroke, and whether these treatments can prevent cognitive decline after stroke. RESULTS: A review of existing data from randomized controlled trials confirms that solid evidence on optimal BP and LDL-C targets is missing, possible interactions between BP and LDL-C lowering treatments have never been directly investigated, and evidence in favour of a beneficial effect of BP or LDL-C lowering on cognitive decline is, at best, very weak. CONCLUSION: A new, large randomized controlled trial is needed to determine the optimal level of BP and LDL-C for the prevention of recurrent stroke and cognitive decline.
Resumo:
Elevated low-density lipoprotein (LDL) levels induce activation of the p38 mitogen-activated protein kinase (MAPK), a stress-activated protein kinase potentially participating in the development of atherosclerosis. The nature of the lipoprotein components inducing p38 MAPK activation has remained unclear however. We show here that both LDLs and high-density lipoproteins (HDLs) have the ability to stimulate the p38 MAPKs with potencies that correlate with their cholesterol content. Cholesterol solubilized in methyl-beta-cyclodextrin was sufficient to activate the p38 MAPK pathway. Liposomes made of phosphatidylcholine (PC) or sphingomyelin, the two main phospholipids found in lipoproteins, were unable to stimulate the p38 MAPKs. In contrast, PC liposomes loaded with cholesterol potently activated this pathway. Reducing the cholesterol content of LDL particles lowered their ability to activate the p38 MAPKs. Cell lines representative of the three main cell types found in blood vessels (endothelial cells, smooth muscle cells and fibroblasts) all activated their p38 MAPK pathway in response to LDLs or cholesterol-loaded PC liposomes. These results indicate that elevated cholesterol content in lipoproteins, as seen in hypercholesterolemia, favors the activation of the stress-activated p38 MAPK pathway in cells from the vessel wall, an event that might contribute to the development of atherosclerosis.
Resumo:
We conducted a genome-wide scan using variance components linkage analysis to localize quantitative-trait loci (QTLs) influencing triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol, and total cholesterol (TC) levels in 3,071 subjects from 459 families with atherogenic dyslipidemia. The most significant evidence for linkage to TG levels was found in a subset of Turkish families at 11q22 [logarithm of the odds ratio (LOD)=3.34] and at 17q12 (LOD=3.44). We performed sequential oligogenic linkage analysis to examine whether multiple QTLs jointly influence TG levels in the Turkish families. These analyses revealed loci at 20q13 that showed strong epistatic effects with 11q22 (conditional LOD=3.15) and at 7q36 that showed strong epistatic effects with 17q12 (conditional LOD=3.21). We also found linkage on the 8p21 region for TG in the entire group of families (LOD=3.08). For HDL-C levels, evidence of linkage was identified on chromosome 15 in the Turkish families (LOD=3.05) and on chromosome 5 in the entire group of families (LOD=2.83). Linkage to QTLs for TC was found at 8p23 in the entire group of families (LOD=4.05) and at 5q13 in a subset of Turkish and Mediterranean families (LOD=3.72). These QTLs provide important clues for the further investigation of genes responsible for these complex lipid phenotypes. These data also indicate that a large proportion of the variance of TG levels in the Turkish population is explained by the interaction of multiple genetic loci.
Resumo:
BACKGROUND: 2013 AHA/ACC guidelines on the treatment of cholesterol advised to tailor high-intensity statin after ACS, while previous ATP-III recommended titration of statin to reach low-density lipoprotein cholesterol (LDL-C) targets. We simulated the impact of this change of paradigm on the achievement of recommended targets. METHODS: Among a prospective cohort study of consecutive patients hospitalized for ACS from 2009 to 2012 at four Swiss university hospitals, we analyzed 1602 patients who survived one year after recruitment. Targets based on the previous guidelines approach was defined as (1) achievement of LDL-C target < 1.8 mmol/l, (2) reduction of LDL-C ≥ 50% or (3) intensification of statin in patients who did not reach LDL-C targets. Targets based on the 2013 AHA/ACC guidelines approach was defined as the maximization of statin therapy at high-intensity in patients aged ≤75 years and moderate- or high-intensity statin in patients >75 years. RESULTS: 1578 (99%) patients were prescribed statin at discharge, with 1120 (70%) at high-intensity. 1507 patients (94%) reported taking statin at one year, with 909 (57%) at high-intensity. Among 482 patients discharged with sub-maximal statin, intensification of statin was only observed in 109 patients (23%). 773 (47%) patients reached the previous LDL-C targets, while 1014 (63%) reached the 2013 AHA/ACC guidelines targetsone year after ACS (p value < 0.001). CONCLUSION: The application of the new 2013 AHA/ACC guidelines criteria would substantially increase the proportion of patients achieving recommended lipid targets one year after ACS. Clinical trial number, NCT01075868.
Resumo:
The effectiveness of lipid-lowering medication critically depends on the patients' compliance and the efficacy of the prescribed drug. The primary objective of this multicentre study was to compare the efficacy of rosuvastatin with or without access to compliance initiatives, in bringing patients to the Joint European Task Force's (1998) recommended low-density lipoprotein cholesterol (LDL-C) level goal (LDL-C, <3.0 mmol/L) at week 24. Secondary objectives were comparison of the number and percentage of patients achieving European goals (1998, 2003) for LDL-C and other lipid parameters. Patients with primary hypercholesterolaemia and a 10-year coronary heart disease risk of >20% received open label rosuvastatin treatment for 24 weeks with or without access to compliance enhancement tools. The initial daily dosage of 10 mg could be doubled at week 12. Compliance tools included: a) a starter pack for subjects containing a videotape, an educational leaflet, a passport/goal diary and details of the helpline and/or website; b) regular personalised letters to provide message reinforcement; c) a toll-free helpline and a website. The majority of patients (67%) achieved the 1998 European goal for LDL-C at week 24. 31% required an increase in dosage of rosuvastatin to 20 mg at week 12. Compliance enhancement tools did not increase the number of patients achieving either the 1998 or the 2003 European target for plasma lipids. Rosuvastatin was well tolerated during this study. The safety profile was comparable with other drugs of the same class. 63 patients in the 10 mg group and 58 in the 10 mg Plus group discontinued treatment. The main reasons for discontinuation were adverse events (39 patients in the 10 mg group; 35 patients in the 10 mg Plus group) and loss to follow-up (13 patients in the 10 mg group; 9 patients in the 10 mg Plus group). The two most frequently reported adverse events were myalgia (34 patients, 3% respectively) and back pain (23 patients, 2% respectively). The overall rate of temporary or permanent study discontinuation due to adverse events was 9% (n = 101) in patients receiving 10 mg rosuvastatin and 3% (n = 9) in patients titrated up to 20 mg rosuvastatin. Rosuvastatin was effective in lowering LDL-C values in patients with hypercholesterolaemia to the 1998 European target at week 24. However, compliance enhancement tools did not increase the number of patients achieving any European targets for plasma lipids.
Resumo:
The objective of the present study was to identify disturbances of nitric oxide radical (·NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg) and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg).Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM), urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM), ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.
Resumo:
In order to determine the effect of antibodies against electronegative low-density lipoprotein LDL(-) on atherogenesis, five groups of LDL low receptor-deficient (LDLr-/-) mice (6 per group) were immunized with the following antibodies (100 µg each): mouse anti-LDL(-) monoclonal IgG2b, rabbit anti-LDL(-) polyclonal IgG or its Fab fragments and mouse irrelevant monoclonal IgG and non-immunized controls. Antibodies were administered intravenously one week before starting the hypercholesterolemic diet (1.25% cholesterol) and then every week for 21 days. The passive immunization with anti-LDL(-) monoclonal IgG2b, polyclonal antibody and its derived Fab significantly reduced the cross-sectional area of atherosclerotic lesions at the aortic root of LDLr-/- mice (28.8 ± 9.7, 67.3 ± 17.02, 56.9 ± 8.02 µm² (mean ± SD), respectively) compared to control (124.9 ± 13.2 µm²). Vascular cell adhesion molecule-1 protein expression, quantified by the KS300 image-analyzing software, on endothelium and the number of macrophages in the intima was also decreased in aortas of mice treated with anti-LDL(-) monoclonal antibody (3.5 ± 0.70 per field x 10) compared to controls (21.5 ± 3.5 per field x 10). Furthermore, immunization with the monoclonal antibody decreased the concentration of LDL(-) in blood plasma (immunized: 1.0 ± 1.4; control: 20.5 ± 3.5 RLU), the amount of cholesterol oxides in plasma (immunized: 4.7 ± 2.7; control: 15.0 ± 2.0 pg COx/mg cholesterol) and liver (immunized: 2.3 ± 1.5; control: 30.0 ± 26.0 pg COx/mg cholesterol), and the hepatic content of lipid hydroperoxides (immunized: 0.30 ± 0.020; control: 0.38 ± 0.15 ng/mg protein). In conclusion, antibodies against electronegative LDL administered intravenously may play a protective role in atherosclerosis.
Resumo:
High levels of low-density lipoprotein cholesterol (LDL-C) enhance platelet activation, whereas high levels of high-density lipoprotein cholesterol (HDL-C) exert a cardioprotective effect. However, the effects on platelet activation of high levels of LDL-C combined with low levels of HDL-C (HLC) have not yet been reported. We aimed to evaluate the platelet activation marker of HLC patients and investigate the antiplatelet effect of atorvastatin on this population. Forty-eight patients with high levels of LDL-C were enrolled. Among these, 23 had HLC and the other 25 had high levels of LDL-C combined with normal levels of HDL-C (HNC). A total of 35 normocholesterolemic (NOMC) volunteers were included as controls. Whole blood flow cytometry and platelet aggregation measurements were performed on all participants to detect the following platelet activation markers: CD62p (P-selectin), PAC-1 (GPIIb/IIIa), and maximal platelet aggregation (MPAG). A daily dose of 20 mg atorvastatin was administered to patients with high levels of LDL-C, and the above assessments were obtained at baseline and after 1 and 2 months of treatment. The expression of platelets CD62p and PAC-1 was increased in HNC patients compared to NOMC volunteers (P<0.01 and P<0.05). Furthermore, the surface expression of platelets CD62p and PAC-1 was greater among HLC patients than among HNC patients (P<0.01 and P<0.05). Although the expression of CD62p and PAC-1 decreased significantly after atorvastatin treatment, it remained higher in the HLC group than in the HNC group (P<0.05 and P=0.116). The reduction of HDL-C further increased platelet activation in patients with high levels of LDL-C. Platelet activation remained higher among HLC patients regardless of atorvastatin treatment.