887 resultados para Kernel polynomials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questo lavoro di tesi riguarda lo studio e l’implementazione di un algoritmo di multiple kernel learning (MKL) per la classificazione e la regressione di dati di neuroimaging ed, in particolare, di grafi di connettività funzionale. Gli algoritmi di MKL impiegano una somma pesata di vari kernel (ovvero misure di similarità) e permettono di selezionare le features utili alla discriminazione delle istanze durante l’addestramento del classificatore/regressore stesso. L’aspetto innovativo introdotto in questa tesi è stato lo studio di un nuovo kernel tra grafi di connettività funzionale, con la particolare caratteristica di conservare l’informazione relativa all’importanza di ogni singola region of interest (ROI) ed impiegando la norma lp come metodo per l’aggiornamento dei pesi, al fine di ottenere soluzioni sparsificate. L’algoritmo è stato validato utilizzando mappe di connettività sintetiche ed è stato applicato ad un dataset formato da 32 pazienti affetti da deterioramento cognitivo lieve e malattia dei piccoli vasi, di cui 16 sottoposti a riabilitazione cognitiva tra un’esame di risonanza ma- gnetica funzionale di baseline e uno di follow-up. Le mappe di con- nettività sono state ottenute con il toolbox CONN. Il classificatore è riuscito a discriminare i due gruppi di pazienti in una configurazione leave-one-out annidata con un’accuratezza dell’87.5%. Questo lavoro di tesi è stato svolto durante un periodo di ricerca presso la School of Computer Science and Electronic Engineering dell’University of Essex (Colchester, UK).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we generalize radial and standard Clifford-Hermite polynomials to the new framework of fractional Clifford analysis with respect to the Riemann-Liouville derivative in a symbolic way. As main consequence of this approach, one does not require an a priori integration theory. Basic properties such as orthogonality relations, differential equations, and recursion formulas, are proven.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bahadur representation and its applications have attracted a large number of publications and presentations on a wide variety of problems. Mixing dependency is weak enough to describe the dependent structure of random variables, including observations in time series and longitudinal studies. This note proves the Bahadur representation of sample quantiles for strongly mixing random variables (including ½-mixing and Á-mixing) under very weak mixing coe±cients. As application, the asymptotic normality is derived. These results greatly improves those recently reported in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para entender nuestro proyecto, debemos comprender DEVS. Dentro de los formalismos más populares de representación de sistemas de eventos discretos se encuentra DES. En la década de los 70, el matemático Bernard Zeigler propuso un formalismo general para la representación de dichos sistemas. Este formalismo denominado DEVS (Discrete EVent System Specification) es el formalismo más general para el tratamiento de DES. DEVS permite representar todos aquellos sistemas cuyo comportamiento pueda describirse mediante una secuencia de eventos discretos. Estos eventos se caracterizan por un tiempo base en el que solo un número de eventos finitos puede ocurrir. DEVS Modelado y Simulación tiene múltiples implementaciones en varios lenguajes de programación como por ejemplo en Java, C# o C++. Pero surge la necesidad de implementar una plataforma distribuida estable para proporcionar la mecánica de interoperabilidad e integrar modelos DEVS diversificados. En este proyecto, se nos dará como código base el core de xDEVS en java, aplicado de forma secuencial y paralelizada. Nuestro trabajo será implementar el core de manera distribuida de tal forma que se pueda dividir un sistema DEVS en diversas máquinas. Para esto hemos utilizado sockets de java para hacer la transmisión de datos lo más eficiente posible. En un principio deberemos especificar el número de máquinas que se conectarán al servidor. Una vez estas se hayan conectado se les enviará el trabajo específico que deberán simular. Cabe destacar que hay dos formas de dividir un sistema DEVS las cuales están implementadas en nuestro proyecto. La primera es dividirlo en módulos atómicos los cuales son subsistemas indivisibles en un sistema DEVS. Y la segunda es dividir las funciones de todos los subsistemas en grupos y repartirlos entre las máquinas. En resumen el funcionamiento de nuestro sistema distribuido será comenzar ejecutando el trabajo asignado al primer cliente, una vez finalizado actualizará la información del servidor y este mandara la orden al siguiente y así sucesivamente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtually every sector of business and industry that uses computing, including financial analysis, search engines, and electronic commerce, incorporate Big Data analysis into their business model. Sophisticated clustering algorithms are popular for deducing the nature of data by assigning labels to unlabeled data. We address two main challenges in Big Data. First, by definition, the volume of Big Data is too large to be loaded into a computer’s memory (this volume changes based on the computer used or available, but there is always a data set that is too large for any computer). Second, in real-time applications, the velocity of new incoming data prevents historical data from being stored and future data from being accessed. Therefore, we propose our Streaming Kernel Fuzzy c-Means (stKFCM) algorithm, which reduces both computational complexity and space complexity significantly. The proposed stKFCM only requires O(n2) memory where n is the (predetermined) size of a data subset (or data chunk) at each time step, which makes this algorithm truly scalable (as n can be chosen based on the available memory). Furthermore, only 2n2 elements of the full N × N (where N >> n) kernel matrix need to be calculated at each time-step, thus reducing both the computation time in producing the kernel elements and also the complexity of the FCM algorithm. Empirical results show that stKFCM, even with relatively very small n, can provide clustering performance as accurately as kernel fuzzy c-means run on the entire data set while achieving a significant speedup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate orthogonal polynomials in D real dimensions are considered from the perspective of the Cholesky factorization of a moment matrix. The approach allows for the construction of corresponding multivariate orthogonal polynomials, associated second kind functions, Jacobi type matrices and associated three term relations and also Christoffel-Darboux formulae. The multivariate orthogonal polynomials, their second kind functions and the corresponding Christoffel-Darboux kernels are shown to be quasi-determinants as well as Schur complements of bordered truncations of the moment matrix; quasi-tau functions are introduced. It is proven that the second kind functions are multivariate Cauchy transforms of the multivariate orthogonal polynomials. Discrete and continuous deformations of the measure lead to Toda type integrable hierarchy, being the corresponding flows described through Lax and Zakharov-Shabat equations; bilinear equations are found. Varying size matrix nonlinear partial difference and differential equations of the 2D Toda lattice type are shown to be solved by matrix coefficients of the multivariate orthogonal polynomials. The discrete flows, which are shown to be connected with a Gauss-Borel factorization of the Jacobi type matrices and its quasi-determinants, lead to expressions for the multivariate orthogonal polynomials and their second kind functions in terms of shifted quasi-tau matrices, which generalize to the multidimensional realm, those that relate the Baker and adjoint Baker functions to ratios of Miwa shifted tau-functions in the 1D scenario. In this context, the multivariate extension of the elementary Darboux transformation is given in terms of quasi-determinants of matrices built up by the evaluation, at a poised set of nodes lying in an appropriate hyperplane in R^D, of the multivariate orthogonal polynomials. The multivariate Christoffel formula for the iteration of m elementary Darboux transformations is given as a quasi-determinant. It is shown, using congruences in the space of semi-infinite matrices, that the discrete and continuous flows are intimately connected and determine nonlinear partial difference-differential equations that involve only one site in the integrable lattice behaving as a Kadomstev-Petviashvili type system. Finally, a brief discussion of measures with a particular linear isometry invariance and some of its consequences for the corresponding multivariate polynomials is given. In particular, it is shown that the Toda times that preserve the invariance condition lay in a secant variety of the Veronese variety of the fixed point set of the linear isometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Macaulay's correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for the dimension of cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we study the heat kernel, a useful tool to analyze various properties of different quantum field theories. In particular, we focus on the study of the one-loop effective action and the application of worldline path integrals to derive perturbatively the heat kernel coefficients for the Proca theory of massive vector fields. It turns out that the worldline path integral method encounters some difficulties if the differential operator of the heat kernel is of non-minimal kind. More precisely, a direct recasting of the differential operator in terms of worldline path integrals, produces in the classical action a non-perturbative vertex and the path integral cannot be solved. In this work we wish to find ways to circumvent this issue and to give a suggestion to solve similar problems in other contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shelled, roasted and salted cashew nut kernels were packaged in three different flexible materials (PP/PE= polypropylene / polyethylene; PETmet/PE= metallized polyethylene terephthalate / polyethylene; PET/Al/LDPE= polyethylene terephthalate / aluminum foil / low density polyethylene ), with different barrier properties. Kernels were stored for one year at 30° C and 80% relative humidity. Quantitative descriptive sensory analysis (QDA) were performed at the end of storage time. Descriptive terms obtained for kernels characterization were brown color, color uniformity and rugosity for appearance; toasted kernel, sweet, old and rancidity for odor; toasted kernel, sweet, old rancidity, salt and bitter for taste, crispness for texture. QDA showed that factors responsible for sensory quality decrease, after one year storage, were increase in old aroma and taste, increase in rancidity aroma and taste, decrease in roasted kernel aroma and taste, and decrease of crispness. Sensory quality decrease was higher in kernels packaged in PP/PE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivou-se identificar fatores associados ao edentulismo e o seu risco espacial em idosos. Foi realizado um estudo transversal em uma amostra de 372 indivíduos de 60 anos e mais, no Município de Botucatu, São Paulo, Brasil, em 2005. Razões de prevalência brutas e ajustadas foram estimadas por meio de regressão de Poisson, com estimativa robusta da variância e procedimentos de modelagem hierárquica. A análise espacial foi realizada por estimativas de densidade de Kernel. A prevalência de edentulismo foi de 63,17%. Os fatores sociodemográficos associados ao edentulismo foram a baixa escolaridade, o aumento do número de pessoas por cômodo, não possuir automóvel e idade mais avançada, presença de comorbidades, ausência de um cirurgião-dentista regular e ter realizado a última consulta há três anos ou mais. A análise espacial mostrou maior risco nas áreas periféricas. Obteve-se uma melhor compreensão da perda dentária entre os idosos, subsidiando o planejamento de ações em saúde coletiva.