925 resultados para KENNEDY PATHWAY
Resumo:
Behavioural phenotypes associated with genetic syndromes have been extensively investigated in order to generate rich descriptions of phenomenology, determine the degree of specificity of behaviours for a particular syndrome, and examine potential interactions between genetic predispositions for behaviour and environmental influences. However, relationships between different aspects of behavioural phenotypes have been less frequently researched and although recent interest in potential cognitive phenotypes or endophenotypes has increased, these are frequently studied independently of the behavioural phenotypes.
Taking Prader-Willi syndrome (PWS) as an example, we discuss evidence suggesting specific relationships between apparently distinct aspects of the PWS behavioural phenotype and relate these to specific endophenotypic characteristics.
The framework we describe progresses through biological, cognitive, physiological and behavioural levels to develop a pathway from genetic characteristics to behaviour with scope for interaction with the environment at any stage.
We propose this multilevel approach as useful in setting out hypotheses in order to structure research that can more rapidly advance theory.
Resumo:
Background: There has been an explosion of interest in methods of exogenous brain stimulation that induce changes in the excitability of human cerebral cortex. The expectation is that these methods may promote recovery of function following brain injury. To assess their effects on motor output, it is typical to assess the state of corticospinal projections from primary motor cortex to muscles of the hand, via electromyographic responses to transcranial magnetic stimulation. If a range of stimulation intensities is employed, the recruitment curves (RCs) obtained can, at least for intrinsic hand muscles, be fitted by a sigmoid function.
Objective/hypothesis: To establish whether sigmoid fits provide a reliable basis upon which to characterize the input–output properties of the corticospinal pathway for muscles proximal to the hand, and to assess as an alternative the area under the (recruitment) curve (AURC).
Methods: A comparison of the reliability of these measures, using RCs obtained for muscles that are frequently the targets of rehabilitation.
Results: The AURC is an extremely reliable measure of the state of corticospinal projections to hand and forearm muscles, which has both face and concurrent validity. Construct validity is demonstrated by detection of widely distributed (across muscles) changes in corticospinal excitability induced by paired associative stimulation (PAS).
Conclusion(s): The parameters derived from sigmoid fits are unlikely to provide an adequate means to assess the effectiveness of therapeutic regimes. The AURC can be employed to characterize corticospinal projections to a range of muscles, and gauge the efficacy of longitudinal interventions in clinical rehabilitation.
Resumo:
Hopanoids are bacterial surrogates of eukaryotic membrane sterols and among earth's most abundant natural products. Their molecular fossils remain in sediments spanning more than a billion years. However, hopanoid metabolism and function are not fully understood. Burkholderia species are environmental opportunistic pathogens that produce hopanoids and also occupy diverse ecological niches. We investigated hopanoids biosynthesis in Burkholderia cenocepacia by deletion mutagenesis and structural characterization of the hopanoids produced by the mutants. The enzymes encoded by hpnH and hpnG were essential for production of all C35 extended hopanoids, including bacteriohopanetetrol (BHT), BHT glucosamine and BHT cyclitol ether. Deletion of hpnI resulted in BHT production, while ΔhpnJ produced only BHT glucosamine. Thus, HpnI is required for BHT glucosamine production while HpnJ is responsible for its conversion to the cyclitol ether. The ΔhpnH and ΔhpnG mutants could not grow under any stress condition tested, whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.
Resumo:
Objectives: The Liverpool Care Pathway for the dying patient (LCP) was designed to improve end-of-life care in generalist health care settings. Controversy has led to its withdrawal in some jurisdictions. The main objective of this research was to identify the influences that facilitated or hindered successful LCP implementation.
Method: An organisational case study using realist evaluation in one health and social care trust in Northern Ireland. Two rounds of semi-structured interviews were conducted with two policy makers and twenty two participants with experience and/or involvement in management of the LCP during 2011 and 2012.
Results: Key resource inputs included facilitation with a view to maintaining LCP ‘visibility’, reducing anxiety among nurses and increasing their confidence regarding the delivery of end-of-life care; and nurse and medical education designed to increase professional self-efficacy and reduce misuse and misunderstanding of the LCP. Key enabling contexts were consistent senior management support; ongoing education and training tailored to the needs of each professional group; and an organisational cultural change in the hospital setting that encompassed end-of-life care.
Conclusion: There is a need to appreciate the organizationally complex nature of intervening to improve end-of-life care. Successful implementation of evidence-based interventions for end-of-life care requires commitment to planning, training and ongoing review that takes account of different perspectives, institutional hierarchies and relationships and the educational needs of professional disciplines. There is a need also to recognise that medical consultants require particular support in their role as gatekeepers and as a lead communication channel with patients and their relatives.
Resumo:
The NOTCH pathway is an evolutionarily conserved signalling network, which is fundamental in regulating developmental processes in invertebrates and vertebrates (Gazave et al. in BMC Evol Biol 9:249, 2009). It regulates self-renewal (Butler et al. in Cell Stem Cell 6:251–264, 2010), differentiation (Auderset et al. in Curr Top Microbiol Immunol 360:115–134, 2012), proliferation (VanDussen et al. in Development 139:488–497, 2012) and apoptosis (Cao et al. in APMIS 120:441–450, 2012) of diverse cell types at various stages of their development. NOTCH signalling governs cell-cell interactions and the outcome of such responses is highly context specific. This makes it impossible to generalize about NOTCH functions as it stimulates survival and differentiation of certain cell types, whereas inhibiting these processes in others (Meier-Stiegen et al. in PLoS One 5:e11481, 2010). NOTCH was first identified in 1914 in Drosophila and was named after the indentations (notches) present in the wings of the mutant flies (Bigas et al. in Int J Dev Biol 54:1175–1188, 2010). Homologs of NOTCH in vertebrates were initially identified in Xenopus (Coffman et al. in Science 249:1438–1441, 1990) and in humans NOTCH was first identified in T-Acute Lymphoblastic Leukaemia (T-ALL) (Ellisen et al. in Cell 66:649–61, 1991). NOTCH signalling is integral in neurogenesis (Mead and Yutzey in Dev Dyn 241:376–389, 2012), myogenesis (Schuster-Gossler et al. in Proc Natl Acad Sci U S A 104:537–542, 2007), haematopoiesis (Bigas et al. in Int J Dev Biol 54:1175–1188, 2010), oogenesis (Xu and Gridley in Genet Res Int 2012:648207, 2012), differentiation of intestinal cells (Okamoto et al. in Am J Physiol Gastrointest Liver Physiol 296:G23–35, 2009) and pancreatic cells (Apelqvist et al. in Nature 400:877–881, 1999). The current review will focus on NOTCH signalling in normal and malignant blood cell production or haematopoiesis.
Resumo:
Stroke patients with hyperglycemia (HG) develop higher volumes of brain edema emerging from disruption of blood-brain barrier (BBB). This study explored whether inductions of protein kinase C-β (PKC-β) and RhoA/Rho-kinase/myosin-regulatory light chain-2 (MLC2) pathway may account for HG-induced barrier damage using an in vitro model of human BBB comprising human brain microvascular endothelial cells (HBMEC) and astrocytes. Hyperglycemia (25 mmol/L D-glucose) markedly increased RhoA/Rho-kinase protein expressions (in-cell westerns), MLC2 phosphorylation (immunoblotting), and PKC-β (PepTag assay) and RhoA (Rhotekin-binding assay) activities in HBMEC while concurrently reducing the expression of tight junction protein occludin. Hyperglycemia-evoked in vitro barrier dysfunction, confirmed by decreases in transendothelial electrical resistance and concomitant increases in paracellular flux of Evan's blue-labeled albumin, was accompanied by malformations of actin cytoskeleton and tight junctions. Suppression of RhoA and Rho-kinase activities by anti-RhoA immunoglobulin G (IgG) electroporation and Y-27632, respectively prevented morphologic changes and restored plasma membrane localization of occludin. Normalization of glucose levels and silencing PKC-β activity neutralized the effects of HG on occludin and RhoA/Rho-kinase/MLC2 expression, localization, and activity and consequently improved in vitro barrier integrity and function. These results suggest that HG-induced exacerbation of the BBB breakdown after an ischemic stroke is mediated in large part by activation of PKC-β.
Resumo:
Purpose: Suppressor of cytokine signalling (SOCS) proteins are feedback inhibitors of the JAK/STAT pathway. SOCS3 critically controls STAT3 activation, cytokine signalling and inflammatory gene expression in macrophages and microglia. In this study, we investigated the role of SOCS3/STAT3 in myeloid cells in the initiation and progression of diabetic retinopathy (DR).
Methods: Mice with a conditional deletion of SOCS3 in myeloid cells (LysMCre-SOCS3 fl/fl) and C57BL/6J (as control) were rendered diabetic by a low-dose multiple intraperitoneal injections of Stroptozocine. Diabetes related retinal changes, including leukostasis, acellular capilliaries, and microglial activation were assessed at different stages of disease. Bone marrow derived macrophages (BMDMs) from LysMCreSOCS3 fl/fl and C57BL/6J mice were cultured in high glucose (HG) medium, and cell activation was evaluated by real-time RT-PCR.
Results: In C57BL/6J diabetic mice the expression of phosphorylated STAT3 (pSTAT3) was increased and SOCS3 was decreased in the retina. Interleukin 6 (IL-6), the main cytokine that stimulates STAT3 activation, was increased in the plamsa in diabetic mice. Although blood glucose levels and Hbac-1 were comparable between LysMCre-SOCS3fl/fl and WT mice after STZ injection, the LysMCreSOCS3 fl/fl diabetic mice developed severe retinal vasculopathy, including increased leukostasis and microglial activation at one month and enhanced acellular capillary formation at 6 months after diabetes induction.
Conclusions: our study suggests that the JAK/STAT3 pathway is involved in the initiation and progression of DR, and uncontrolled STAT3 activation results in accelerated DR progression. Targeting the STAT3 pathway may be a novel approach for the management of DR.
Resumo:
Objective: Diabetic nephropathy (DN) is a microvascular complication of diabetes. Members of the WNT/ β-catenin pathways have been implicated in interstitial fibrosis and glomerular sclerosis, characteristic hallmarks of DN. These processes are controlled, in part, by transcription factors (TFs), proteins which bind to gene promoter regions attenuating their regulation. We sought to identify predicted cis-acting transcription factor binding sites (TFBS) over-represented within the promoter regions of WNT pathway members compared to genes across the genome.Methods: We assessed the frequency of 62 TFBS motifs from the JASPAR databases on 65 WNT pathway genes. P-values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were examined from DN-related datasets to assess clinical significance.Results: TFBS motifs transcription factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (P-values<6.83x10-29, 1.34x10-11 and 3.01x10-6 respectively). MZF1 gene expression was significantly increased in DN in a whole kidney dataset (fold change = 1.16; 16% increase; P = 0.03). TFAP2A gene expression was decreased in an independent dataset (fold change = -1.02; P = 0.03). SP1 was not differentially expressed in any datasets examined.Conclusions: Three TFBS profiles are significantly enriched within the WNT pathway genes examined highlighting the use of in silico analyses for identifying key regulators of this pathway. Modification of TF binding to gene promoter regions involved in DN pathology may limit progression, making refinement of targeted therapeutic strategies possible through clearer delineation of their role.
Resumo:
Empirically derived phenotypic measurements have the potential to enhance gene-finding efforts in schizophrenia. Previous research based on factor analyses of symptoms has typically included schizoaffective cases. Deriving factor loadings from analysis of only narrowly defined schizophrenia cases could yield more sensitive factor scores for gene pathway and gene ontology analyses. Using an Irish family sample, this study 1) factor analyzed clinician-rated Operational Criteria Checklist items in cases with schizophrenia only, 2) scored the full sample based on these factor loadings, and 3) implemented genome-wide association, gene-based, and gene-pathway analysis of these SCZ-based symptom factors (final N= 507). Three factors emerged from the analysis of the schizophrenia cases: a manic, a depressive, and a positive symptom factor. In gene-based analyses of these factors, multiple genes had q<. 0.01. Of particular interest are findings for PTPRG and WBP1L, both of which were previously implicated by the Psychiatric Genomics Consortium study of SCZ; results from this study suggest that variants in these genes might also act as modifiers of SCZ symptoms. Gene pathway analyses of the first factor indicated over-representation of glutamatergic transmission, GABA-A receptor, and cyclic GMP pathways. Results suggest that these pathways may have differential influence on affective symptom presentation in schizophrenia.
Resumo:
Ataxia telangiectasia mutated (ATM) is an important signaling molecule in the DNA damage response (DDR). ATM loss of function can produce a synthetic lethal phenotype in combination with tumor-associated mutations in FA/BRCA pathway components. In this study, we took an siRNA screening strategy to identify other tumor suppressors that, when inhibited, similarly sensitized cells to ATM inhibition. In this manner, we determined that PTEN and ATM were synthetically lethal when jointly inhibited. PTEN-deficient cells exhibited elevated levels of reactive oxygen species, increased endogenous DNA damage, and constitutive ATM activation. ATM inhibition caused catastrophic DNA damage, mitotic cell cycle arrest, and apoptosis specifically in PTEN-deficient cells in comparison with wild-type cells. Antioxidants abrogated the increase in DNA damage and ATM activation in PTEN-deficient cells, suggesting a requirement for oxidative DNA damage in the mechanism of cell death. Lastly, the ATM inhibitor KU-60019 was specifically toxic to PTEN mutant cancer cells in tumor xenografts and reversible by reintroduction of wild-type PTEN. Together, our results offer a mechanistic rationale for clinical evaluation of ATM inhibitors in PTEN-deficient tumors.
Resumo:
BACKGROUND: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.
METHODS: Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV.
RESULTS: Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling.
CONCLUSIONS: While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.