977 resultados para Joints (structural components)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the sources of structural changes in output growth of South Africa's economy over 1975-93 using a decomposition method within the inputoutput (IO) framework for analysing output changes from a demand side perspective. It decomposes output growth into private consumption, government consumption, investment and export components and also measures the impact of import substitution and changes in intermediate input use (as indicated by changes in IO coefficients). It is found that, before 1981, overall output growth was multi-components driven with all the above components contributing positively to economic growth. However, the collapse of investment demand is by far the single largest factor contributing to the economic stagnation that categorizes the post-1981 period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis and prediction of the dynamic behaviour of s7ructural components plays an important role in modern engineering design. :n this work, the so-called "mixed" finite element models based on Reissnen's variational principle are applied to the solution of free and forced vibration problems, for beam and :late structures. The mixed beam models are obtained by using elements of various shape functions ranging from simple linear to complex cubic and quadratic functions. The elements were in general capable of predicting the natural frequencies and dynamic responses with good accuracy. An isoparametric quadrilateral element with 8-nodes was developed for application to thin plate problems. The element has 32 degrees of freedom (one deflection, two bending and one twisting moment per node) which is suitable for discretization of plates with arbitrary geometry. A linear isoparametric element and two non-conforming displacement elements (4-node and 8-node quadrilateral) were extended to the solution of dynamic problems. An auto-mesh generation program was used to facilitate the preparation of input data required by the 8-node quadrilateral elements of mixed and displacement type. Numerical examples were solved using both the mixed beam and plate elements for predicting a structure's natural frequencies and dynamic response to a variety of forcing functions. The solutions were compared with the available analytical and displacement model solutions. The mixed elements developed have been found to have significant advantages over the conventional displacement elements in the solution of plate type problems. A dramatic saving in computational time is possible without any loss in solution accuracy. With beam type problems, there appears to be no significant advantages in using mixed models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research is to promote the use of G.R.P. as a structural material. In the past, the use of G.R.P. has been confined to non-load carrying applications. Such uses are still rapidly increasing but in addition significant changes have been made during the last decade in the development of semi-structural and now even fully structural applications. Glass-reinforced plastic is characterized by a high strength but a relatively low modulus of elasticity. For this reasona G.R.P. structure can expect to show large deformations as a result of which the individual structural members will fail under load due to a loss of stability rather than approaching the ultimate strength of the material. For this reason the selection of the geometrical shapes of G.R.P. structural elements is considered to be an important factor in designing G.R.P. structures. The first chapter of this thesis deals with a general review of the theoretical and experimental methods used to describe the structural properties of G.R.P. The research programme includes five stages dealing with the structural behaviour of G.R.P. The first stage (Chapter 2) begins with selecting and designing an optimum box beam cross-section which gives the maximum flexural and torsional rigidity. The second stage of investigation (Chapter 3) deals with beam to beam connections. A joint was designed and manufactured with different types of fasteners used to connect two beam units. A suitable fastener was selected and the research extended to cover the behaviour of long span beams using multiple joints. The third part of the investigation includes a study of the behaviour of box beams subjected to combined bending, shear and torsion. A special torque rig was developed to perform the tests. Creep deformation of 6 m span G.R.P. was investigated as the fourth stage under a range of loading conditions. As a result of the phenomenon of post buckling behaviour exhibited in the compression flange during testing of box beams during earlier stages of the investigation it was decided to consider this phenomenon in more detail in the final stage of the investigation. G.R.P. plates with different fibre orientation were subjected to uniaxial compression and tested up to failure. In all stages of the investigation theoretical predictions and experimental results were compared and generally good correlation between theory and experimental data was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Torrefaction experiments were carried out for three typical South African biomass samples (softwood chips, hardwood chips and sweet sorghum bagasse) to a weight loss of 30wt.%. During torrefaction, moisture, non-structural carbohydrates and hemicelluloses were reduced, resulting in a structurally modified torrefaction product. There was a reduction in the average crystalline diameter (La) (XRD), an increase in the aromatic fraction and a reduction in aliphatics (substituted and unsubstituted) (CPMAS 13C NMR). The decrease in the aliphatic components of the lignocellulosic material under the torrefaction conditions also resulted in a slight ordering of the carbon lattice. The degradation of hemicelluloses and non-structural carbohydrates increased the inclusive surface area of sweet sorghum bagasse, while it did not change significantly for the woody biomasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four bar mechanisms are basic components of many important mechanical devices. The kinematic synthesis of four bar mechanisms is a difficult design problem. A novel method that combines the genetic programming and decision tree learning methods is presented. We give a structural description for the class of mechanisms that produce desired coupler curves. Constructive induction is used to find and characterize feasible regions of the design space. Decision trees constitute the learning engine, and the new features are created by genetic programming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of the research is to provide an overview of those factors that play a major role in structural failures and also to focus on the importance that bracing has in construction accidents. A temporary bracing system is important to construction safety, yet it is often neglected. Structural collapses often occur due to the insufficient support of loads that are applied at the time of failure. The structural load is usually analyzed by conceiving the whole structure as a completed entity, and there is frequently a lack of design or proper implementation of systems that can provide stability during construction. Often, the specific provisions and requirements of temporary bracing systems are left to the workers on the job site that may not have the qualifications or expertise for proper execution. To effectively see if bracing design should get more attention in codes and standards, failures which could have been avoided with the presence and/or the correct design of a bracing system were searched and selected among a variety of cases existing in the engineering literature. Eleven major cases were found, which span in a time frame of almost 70 years, clearly showing that the topic should get more attention. The case studies are presented in chronological order and in a systematic way. The failed structure is described in its design components and the sequence of failure is reconstructed. Then, the causes and failure mechanism are presented. Advice on how to avoid similar failures from happening again and hypothetic solutions which could have prevented the collapses are identified. The findings shows that insufficient or nonexistent bracing mainly results from human negligence or miscalculation of the load analysis and show that time has come to fully acknowledge that temporary structures should be more accounted for in design and not left to contractors' means and methods of construction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research adds to a body of work exploring the role of Social Network Analysis (SNA) in the study of both relational and structural characteristics of supply chain networks. Two contrasting network cases (food enterprises and digital-based enterprises) are chosen in order to elicit structural differences in business networks subject to divergences in local embeddedness and the relative materiality of the goods and services produced. Our analysis and findings draw out differences in network structure as evidenced by metrics of network centralization and cohesion, the presence of components and other sub-groupings, and the position of central actors. We relate these structural features both to the nature of the networks and to the (qualitative) experiences of the actors themselves. We find, in particular, the role of customers as co-creators of knowledge (for the Food network), the central role of infrastructure and services (for the Digital network), the importance of ICT as a source of codified knowledge inputs, along with the continuing importance of geographical proximity for the development and transfer of tacit knowledge and for incremental learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A structural time series model is one which is set up in terms of components which have a direct interpretation. In this paper, the discussion focuses on the dynamic modeling procedure based on the state space approach (associated to the Kalman filter), in the context of surface water quality monitoring, in order to analyze and evaluate the temporal evolution of the environmental variables, and thus identify trends or possible changes in water quality (change point detection). The approach is applied to environmental time series: time series of surface water quality variables in a river basin. The statistical modeling procedure is applied to monthly values of physico- chemical variables measured in a network of 8 water monitoring sites over a 15-year period (1999-2014) in the River Ave hydrological basin located in the Northwest region of Portugal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation demonstrates an explanation of damage and reliability of critical components and structures within the second law of thermodynamics. The approach relies on the fundamentals of irreversible thermodynamics, specifically the concept of entropy generation due to materials degradation as an index of damage. All failure mechanisms that cause degradation, damage accumulation and ultimate failure share a common feature, namely energy dissipation. Energy dissipation, as a fundamental measure for irreversibility in a thermodynamic treatment of non-equilibrium processes, leads to and can be expressed in terms of entropy generation. The dissertation proposes a theory of damage by relating entropy generation to energy dissipation via generalized thermodynamic forces and thermodynamic fluxes that formally describes the resulting damage. Following the proposed theory of entropic damage, an approach to reliability and integrity characterization based on thermodynamic entropy is discussed. It is shown that the variability in the amount of the thermodynamic-based damage and uncertainties about the parameters of a distribution model describing the variability, leads to a more consistent and broader definition of the well know time-to-failure distribution in reliability engineering. As such it has been shown that the reliability function can be derived from the thermodynamic laws rather than estimated from the observed failure histories. Furthermore, using the superior advantages of the use of entropy generation and accumulation as a damage index in comparison to common observable markers of damage such as crack size, a method is proposed to explain the prognostics and health management (PHM) in terms of the entropic damage. The proposed entropic-based damage theory to reliability and integrity is then demonstrated through experimental validation. Using this theorem, the corrosion-fatigue entropy generation function is derived, evaluated and employed for structural integrity, reliability assessment and remaining useful life (RUL) prediction of Aluminum 7075-T651 specimens tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) have attracted significant attention during the past decade due to their high porosity, tunable structures, and controllable surface functionalities. Therefore many applications have been proposed for MOFs. All of them however are still in their infancy stage and have not yet been brought into the market place. In this thesis, the background of the MOF area is first briefly introduced. The main components and the motifs of designing MOFs are summarized, followed by their synthesis and postsynthetic modification methods. Several promising application areas of MOFs including gas storage and separation, catalysis and sensing are reviewed. The current status of commercialization of MOFs as new chemical products is also summarized. Examples of the design and synthesis of two new MOF structures Eu(4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid))·2H2O∙xDMF and Zn4O(azobenzene-4,4’-dicarboxylic acid)3∙xNMP are described. The first one contains free-base porphyrin centers and the second one has azobenzene components. Although the structures were synthesized as designed, unfortunately they did not possess the expected properties. The research idea to use MOFs as template materials to synthesize porous polymers is introduced. Several methods are discussed to grow PMMA into IRMOF-1 (Zn4O(benzene-1,4-dicarboxylate)3, IR stands for isoreticular) structure. High concentration of the monomers resulted in PMMA shell after MOF digestion while with low concentration of monomers no PMMA was left after digestion due to the small iii molecular weight. During the study of this chapter, Kitagawa and co-workers published several papers on the same topic, so this part of the research was terminated thereafter. Many MOFs are reported to be unstable in air due to the water molecules in air which greatly limited their applications. By incorporating a number of water repelling functional groups such as trifluoromethoxy group and methyl groups in the frameworks, the water stability of MOFs are shown to be significantly enhanced. Several MOFs inculding Banasorb-22 (Zn4O(2-trifluoromethoxybenzene-1,4-dicarboxylate)3), Banasorb-24 (Zn4O(2, 5-dimethylbenzene-1,4-dicarboxylate)3) and Banasorb-30 (Zn4O(2-methylbenzene-1,4-dicarboxylate)3) were synthesized and proved to have isostructures with IRMOF-1. Banasorb-22 was stable in boiling water steam for one week and Banasorb-30’s shelf life was over 10 months under ambient condition. For comparison, IRMOF-1’s structure collapses in air after a few hours to several days. Although MOF is a very popular research area nowadays, only a few studies have been reported on the mechanical properties of MOFs. Many of MOF’s applications involve high pressure conditions, so it is important to understand the behavior of MOFs under elivated pressures. The mechanical properties of IRMOF-1 and a new MOF structure Eu2(C12N2O4H6)3(DEF)0.87(H2O)2.13 were studied using diamond anvil cells at Advanced Photon Source. IRMOF-1 experienced an irriversible phase transtion to a nonporous phase followed by amorphization under high pressure. Eu2(C12N2O4H6)3(DEF)0.87(H2O)2.13 showed reversible compression under pressure up to 9.08GPa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Because there is scientific evidence that an appropriate intake of dietary fibre should be part of a healthy diet, given its importance in promoting health, the present study aimed to develop and validate an instrument to evaluate the knowledge of the general population about dietary fibres. Study design: The present study was a cross sectional study. Methods: The methodological study of psychometric validation was conducted with 6010 participants, residing in ten countries from 3 continents. The instrument is a questionnaire of self-response, aimed at collecting information on knowledge about food fibres. For exploratory factor analysis (EFA) was chosen the analysis of the main components using varimax orthogonal rotation and eigenvalues greater than 1. In confirmatory factor analysis by structural equation modelling (SEM) was considered the covariance matrix and adopted the Maximum Likelihood Estimation algorithm for parameter estimation. Results: Exploratory factor analysis retained two factors. The first was called Dietary Fibre and Promotion of Health (DFPH) and included 7 questions that explained 33.94 % of total variance ( = 0.852). The second was named Sources of Dietary Fibre (SDF) and included 4 questions that explained 22.46% of total variance ( = 0.786). The model was tested by SEM giving a final solution with four questions in each factor. This model showed a very good fit in practically all the indexes considered, except for the ratio 2/df. The values of average variance extracted (0.458 and 0.483) demonstrate the existence of convergent validity; the results also prove the existence of discriminant validity of the factors (r2 = 0.028) and finally good internal consistency was confirmed by the values of composite reliability (0.854 and 0.787). Conclusions: This study allowed validating the KADF scale, increasing the degree of confidence in the information obtained through this instrument in this and in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with change point analysis for time series, i.e. with detection of structural breaks in time-ordered, random data. This long-standing research field regained popularity over the last few years and is still undergoing, as statistical analysis in general, a transformation to high-dimensional problems. We focus on the fundamental »change in the mean« problem and provide extensions of the classical non-parametric Darling-Erdős-type cumulative sum (CUSUM) testing and estimation theory within highdimensional Hilbert space settings. In the first part we contribute to (long run) principal component based testing methods for Hilbert space valued time series under a rather broad (abrupt, epidemic, gradual, multiple) change setting and under dependence. For the dependence structure we consider either traditional m-dependence assumptions or more recently developed m-approximability conditions which cover, e.g., MA, AR and ARCH models. We derive Gumbel and Brownian bridge type approximations of the distribution of the test statistic under the null hypothesis of no change and consistency conditions under the alternative. A new formulation of the test statistic using projections on subspaces allows us to simplify the standard proof techniques and to weaken common assumptions on the covariance structure. Furthermore, we propose to adjust the principal components by an implicit estimation of a (possible) change direction. This approach adds flexibility to projection based methods, weakens typical technical conditions and provides better consistency properties under the alternative. In the second part we contribute to estimation methods for common changes in the means of panels of Hilbert space valued time series. We analyze weighted CUSUM estimates within a recently proposed »high-dimensional low sample size (HDLSS)« framework, where the sample size is fixed but the number of panels increases. We derive sharp conditions on »pointwise asymptotic accuracy« or »uniform asymptotic accuracy« of those estimates in terms of the weighting function. Particularly, we prove that a covariance-based correction of Darling-Erdős-type CUSUM estimates is required to guarantee uniform asymptotic accuracy under moderate dependence conditions within panels and that these conditions are fulfilled, e.g., by any MA(1) time series. As a counterexample we show that for AR(1) time series, close to the non-stationary case, the dependence is too strong and uniform asymptotic accuracy cannot be ensured. Finally, we conduct simulations to demonstrate that our results are practically applicable and that our methodological suggestions are advantageous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For more than two decades we have witnessed in Latin America –in Argentina particularly– the development of policies to expand the school day. We understand that the implementation of such policies is an opportunity to observe the behavior of the school’s behavior faced with the attempt to modify one of its hardest components –school-time–; it becomes also a natural laboratory to analyze how much does the traditional organization of school-time can resist, how does it change and how do these changes (if implemented) impact the rest of the school components (spaces, groups, etc.). This paper shows the state of the art of the most significant studies in two research fields, in the context of primary education, on this matter: on the one hand, the studies related to organization and extension of school time and, on the other hand, research on the structural and structuring components of school-related aspects. The literature review indicates that studies on school-time and on the corresponding extension policies and programs do not report the difficulties found when trying to modify the hard components of the school system. Studies with the ‘school system’ as object of study have not approached the numerous school-time extension experiences, although time is one of the structural elements of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research activity carried out in the Brasimone Research Center of ENEA concerns the development and mechanical characterization of steels conceived as structural materials for future fission reactors (Heavy Liquid Metal IV Generation reactors: MYRRHA and ALFRED) and for the future fusion reactor DEMO. Within this framework, two parallel lines of research have been carried out: (i) characterization in liquid lead of steels and weldings for the components of the IV Generation fission reactors (GIV) by means of creep and SSRT (Slow Strain Rate Tensile) tests; (ii) development and screening on mechanical properties of RAFM (Reduced Activation Ferritic Martensitic) steels to be employed as structural materials of the future DEMO fusion reactor. The doctoral work represents therefore a comprehensive report of the research carried out on nuclear materials both from the point of view of the qualification of existing (commercial) materials for their application in the typical environmental conditions of 4th generation fission reactors operating with lead as coolant, and from the point of view of the metallurgical study (with annexed microstructural and mechanical characterization of the selected compositions / Thermo Mechanical Treatment (TMT) options) of new compositional variants to be proposed for the “Breeding Blanket” of the future DEMO Fusion Reactor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing demand for lightweight solutions in every field of engineering is driving the industry to seek new technological solutions to exploit the full potential of different materials. The combination of dissimilar materials with distinct property ranges embodies a transparent allocation of component functions while allowing an optimal mix of their characteristics. From both technological and design perspectives, the interaction between dissimilar materials can lead to severe defects that compromise a multi-material hybrid component's performance and its structural integrity. This thesis aims to develop methodologies for designing, manufacturing, and monitoring of hybrid metal-composite joints and hybrid composite components. In Chapter 1, a methodology for designing and manufacturing hybrid aluminum/composite co-cured tubes is assessed. In Chapter 2, a full-field methodology for fiber misalignment detection and stiffness prediction for hybrid, long fiber reinforced composite systems is shown and demonstrated. Chapter 3 reports the development of a novel technology for joining short fiber systems and metals in a one-step co-curing process using lattice structures. Chapter 4 is dedicated to a novel analytical framework for the design optimization of two lattice architectures.