961 resultados para Intestinal Epithelial-Cells
Resumo:
Joining (J) chain is a component of polymeric, but not monomeric, immunoglobulin (Ig) molecules and may play a role in their polymerization and transport across epithelial cells. To date, study of the J chain has been confined to vertebrates that produce Ig and in which the J chain displays a considerable degree of structural homology. The role of the J chain in Ig polymerization has been questioned and, since the J chain can be expressed in lymphoid cells that do not produce Ig, it is possible that the J chain may have other functions. To explore this possibility, we have surveyed J-chain gene, mRNA, and protein expression by using reverse transcriptase-coupled PCR, Northern blot analysis, and immunoblot analysis in invertebrate species that do not produce Ig. We report that the J-chain gene is expressed in invertebrates (Mollusca, Annelida, Arthropoda, Echinodermata, and Holothuroidea), as well as in representative vertebrates (Mammalia, Teleostei, Amphibia). Furthermore, J-chain cDNA from the earthworm has a high degree of homology (68-76%) to human, mouse, and bovine J chains. Immunohistochemical studies reveal that the J chain is localized in the mucous cells of body surfaces, intestinal epithelial cells, and macrophage-like cells of the earthworm and slug. This study suggests that the J chain is a primitive polypeptide that arose before the evolution of Ig molecules and remains highly conserved in extent invertebrates and vertebrates.
Resumo:
The rho family of GTP-binding proteins regulates actin filament organization. In unpolarized mammalian cells, rho proteins regulate the assembly of actin-containing stress fibers at the cell-matrix interface. Polarized epithelial cells, in contrast, are tall and cylindrical with well developed intercellular tight junctions that permit them to behave as biologic barriers. We report that rho regulates filamentous actin organization preferentially in the apical pole of polarized intestinal epithelial cells and, in so doing, influences the organization and permeability of the associated apical tight junctions. Thus, barrier function, which is an essential characteristic of columnar epithelia, is regulated by rho.
Resumo:
Enteropathogenic Escherichia coli (EPEC) causes a characteristic histopathology in intestinal epithelial cells called the attaching and effacing lesion. Although the histopathological lesion is well described the bacterial factors responsible for it are poorly characterized. We have identified four EPEC chromosomal genes whose predicted protein sequences are similar to components of a recently described secretory pathway (type III) responsible for exporting proteins lacking a typical signal sequence. We have designated the genes sepA, sepB, sepC, and sepD (sep, for secretion of E. coli proteins). The predicted Sep polypeptides are similar to the Lcr (low calcium response) and Ysc (yersinia secretion) proteins of Yersinia species and the Mxi (membrane expression of invasion plasmid antigens) and Spa (surface presentation of antigens) regions of Shigella flexneri. Culture supernatants of EPEC strain E2348/69 contain several polypeptides ranging in size from 110 kDa to 19 kDa. Proteins of comparable size were recognized by human convalescent serum from a volunteer experimentally infected with strain E2348/69. A sepB mutant of EPEC secreted only the 110-kDa polypeptide and was defective in the formation of attaching and effacing lesions and protein-tyrosine phosphorylation in tissue culture cells. These phenotypes were restored upon complementation with a plasmid carrying an intact sepB gene. These data suggest that the EPEC Sep proteins are components of a type III secretory apparatus necessary for the export of virulence determinants.
Resumo:
In an increasingly hygiene concerned society, a major barrier to pet ownership is the perceived role of companion animals in contributing to the risk of exposure to zoonotic bacterial pathogens, such as Salmonella. Manifestations of Salmonella can range from acute gastroenteritis to perfuse enteric fever, in both humans and dogs. Dogs are heavily associated with asymptomatic carriage of Salmonella as the microorganism can persist in the lower intestines of this host which can be then excreted into the environment. Studies in to the asymptomatic carriage of Salmonella in dogs are somewhat dated and there is limited UK data. The current UK carriage rate in dogs was investigated in a randomised dog population and it was revealed that the carriage rate in this population was very low with only one household dog positive for the carriage of Salmonella enterica arizonae (0.2%), out of 490 dogs sampled. Salmonella serotypes share phenotypic and genotypic similarities which are captured in epidemiological typing methods. Therefore, in parallel to the epidemiological investigations, a panel of clinical canine (VLA, UK) and human (Aston University, UK) Salmonella isolates were profiled based on their phenotypic and genotypic characteristics; using API 20E, Biolog Microbial ID System, antibiotic sensitivity testing and PFGE, respectively. Antibiotic sensitivity testing revealed a significant difference between the canine and human isolates with the canine group demonstrating a higher resistance to the panel of antibiotics tested. Further metabolic capabilities of the strains were tested using the Biolog Microbial ID System, which reveal no clear association between the two host groups. However, coupled with Principle Component Analysis two canine isolates were discriminated from the entire population on the basis of a high up-regulation of two carbohydrates. API 20E testing revealed no association between the two host groups. A PFGE harmonised protocol was used to genotypically profile the strains. A dendrogram depicting PFGE profiles of the panel of Salmonella isolates was performed where similarities were calculated by Dice coefficient and represented by UPGMA clustering. Clustering of the profiles from canine isolates and human isolates (HPA, UK) was diverse representing a natural heterogeneity of the genus, additionally, no clear clustering of the isolates was observed between host groups. Clustering was observed with isolates from the same serotype, independent of host origin. Host adaption is a common phenomenon in certain Salmonella serotypes, for example S. Typhi in humans and S. Dublin in cattle. It was of interest to investigate potential host adaptive or restricted strains for canine host by performing adhesion and invasion assays on Dog Intestinal Epithelial Cells (DIECs) (WALTHAM®, UK) and human CaCo-2 (HPA, UK) cell lines. Salmonella arizonae and Enteritidis from an asymptomatic dog and clinical isolate, respectively, demonstrated a significantly high proportion of invasion in DIEC in comparison to human CaCo-2 cells and other tested Salmonella serotypes. This may be suggestive of a potential host restrictive strain as their ability to invade the CaCo-2 cell line was significantly lower than the other serotypes. In conclusion to this thesis the investigations carried out suggest that asymptomatic carriage of Salmonella in UK dogs is low however the microorganism remains as a zoonotic and anthroponotic pathogen based on phenotypic and genotypic characterisation however there may be potential for particular serotype to become host restricted as observed in invasion assays
Resumo:
The hypoxia-inducible factor (HIF) is a key regulator of the transcriptional response to hypoxia. While the mechanism underpinning HIF activation is well understood, little is known about its resolution. Both the protein and the mRNA levels of HIF-1a (but not HIF-2a) were decreased in intestinal epithelial cells exposed to prolonged hypoxia. Coincident with this, microRNA (miRNA) array analysis revealed multiple hypoxiainducible miRNAs. Among these was miRNA-155 (miR-155), which is predicted to target HIF-1a mRNA. We confirmed the hypoxic upregulation of miR-155 in cultured cells and intestinal tissue from mice exposed to hypoxia. Furthermore, a role for HIF-1a in the induction of miR-155 in hypoxia was suggested by the identification of hypoxia response elements in the miR-155 promoter and confirmed experimentally. Application of miR-155 decreased the HIF-1a mRNA, protein, and transcriptional activity in hypoxia, and neutralization of endogenous miR-155 reversed the resolution of HIF-1a stabilization and activity. Based on these data and a mathematical model of HIF-1a suppression by miR-155, we propose that miR-155 induction contributes to an isoform-specific negative-feedback loop for the resolution of HIF-1a activity in cells exposed to prolonged hypoxia, leading to oscillatory behavior of HIF-1a-dependent transcription. © 2011, American Society for Microbiology.
Resumo:
Colorectal cancer (CRC) is the second most common cancer in Europe, with the second highest mortality rate. Although prognosis is improving, survival rates remain poor for those presenting with the most advanced stages of the disease. There is therefore a need for improved early diagnosis and thus a greater understanding of the early stages of the development of colorectal tumours is desirable. Additionally, as most deaths in colorectal cancer are due to advanced metastatic disease, it is of great interest to explore any potential mechanisms by which metastatic disease can be inhibited. N-WASP is a ubiquitously expressed protein with multiple intracellular roles including actin regulation and maintaining stability of epithelial cell-cell junctions. Through its role as an actin regulator, it has been implicated in the processes of invasion and metastasis of multiple cancer types. Its role in the development and progression of colorectal cancer however has not been fully explored. This thesis will present a series of in vitro and in vivo studies that were carried out with the aim of answering the following questions: • Does N-Wasp have a role in normal intestinal homeostasis? • Does N-Wasp knockout affect the development of tumours in a mouse model of intestinal tumourigenesis? • Does N-Wasp knockout affect the invasive properties of intestinal cancer in vitro? • Does N-WASP correlate with prognosis or other indicators in human colorectal cancer TMAs? Findings from the in vivo experiments, using an inducible, gut-specific knockout model, have uncovered potential roles for N-Wasp in regulating differentiation and migration of intestinal epithelial cells. Although it had no effect in short term models of intestinal hyperproliferation, N-Wasp knockout increased tumour burden and decreased survival in an established in vivo model of intestinal tumourigenesis, in which there is heterozygous loss of Apc (Apcfl/+). No effect was seen on tumour development or survival when additional N-WASP knockout was introduced into a more rapid model, with heterozygous loss of Apc and mutation of Kras (Apcfl/+ KrasG12D/+). N-WASP expression in human colorectal cancer was assessed using immunohistochemical staining of two tissue microarrays. Low levels of N-WASP expression were found to be associated with presence of MMR deficiency. There was no statistically significant difference in overall or cancer specific survival based on N-WASP expression. Collectively, the data presented here suggest a previously unreported role for N-WASP in regulation of intestinal epithelial differentiation and indicate that it may act as a tumour suppressor against development of benign precursor lesions of colorectal cancer. Further research is warranted to delineate the mechanisms underlying these processes.
Resumo:
Campylobacter is a leading cause of foodborne bacterial gastroenteritis worldwide and infections can be fatal. The emergence of antibiotic-resistant Campylobacter spp. necessitates the development of new antimicrobials. We identified novel anti-Campylobacter small molecule inhibitors using a high throughput growth inhibition assay. To expedite screening, we made use of a “bioactive” library of 4,182 compounds that we have previously shown to be active against diverse microbes. Screening for growth inhibition of Campylobacter jejuni, identified 781 compounds that were either bactericidal or bacteriostatic at a concentration of 200 µM. Seventy nine of the bactericidal compounds were prioritized for secondary screening based on their physico-chemical properties. Based on the minimum inhibitory concentration against a diverse range of C. jejuni and a lack of effect on gut microbes, we selected 12 compounds. No resistance was observed to any of these 12 lead compounds when C. jejuni was cultured with lethal or sub-lethal concentrations suggesting that C. jejuni is less likely to develop resistance to these compounds. Top 12 compounds also possessed low cytotoxicity to human intestinal epithelial cells (Caco-2 cells) and no hemolytic activity against sheep red blood cells. Next, these 12 compounds were evaluated for ability to clear C. jejuni in vitro. A total of 10 compounds had an anti-C. jejuni effect in Caco-2 cells with some effective even at 25 µM concentrations. These novel 12 compounds belong to five established antimicrobial chemical classes; piperazines, aryl amines, piperidines, sulfonamide and pyridazinone. Exploitation of analogues of these chemical classes may provide Campylobacter specific drugs that can be applied in both human and animal medicine.
Resumo:
Infant formula is consumed by the majority of infants in the United States for at least part of the first year of life. Infant formula lacks many of the bioactive compounds that are naturally occurring in breast milk. Because of this, there has been an increased interest by the companies that manufacture infant formula to include additives that would potentially allow formula to more closely mimic breast milk activity. One such ingredient currently being added to infant formula is prebiotics. Prebiotics are non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth of specific healthful bacteria in the colon. It is speculated that prebiotics replicate the activity of breast milk oligosaccharides, which through the production of butyrate by intestinal microbiota, may interact with the Wnt/BMP pathways. The Wnt/BMP pathways regulate intestinal stem cells, which determine the growth, development and maintenance of the intestine. Therefore, the objective of this study was to explore the effects that the addition of prebiotics to formula have on the regulation of the Wnt/BMP pathways when fed to neonatal piglets, a model commonly used in the study of infant nutrition. Piglets (n=5) were randomized into sow-reared (SR), fed control formula (F), or fed formula with added prebiotics (F+P). Fructooligosaccharides (FOS) (2 g/L) and polydextrose (PDX) (2 g/L) were chosen as the prebiotics for this study, because this combination had been less studied than other combinations. Ileum and ascending colon were collected at 7 and 14 days-of-age. Dry matter content, pH, and short chain fatty acid (SCFA) content was measured. The mRNA expression of β-catenin, sFRP3, sFRP4, frizzled 6, DKK1 (Wnt pathway), gremlin (BMP pathway), TNF-a, HNF-4α and osteopontin (OPN) was measured by RT-qPCR. Piglets fed the F+P diet had greater acetate concentration and lower pH in the ileum at day 14 and in the colon at day 7 and day 14 than F piglets. Butyrate concentrations were highest in SR with F+P not differing from F in ileum at day 14 and colon at day 7 and day 14. Effects of age were seen in all genes, with the exception of OPN, sFRP-3 and sFRP-4. On day 7, no effect of diet was observed in the ileum, however, mRNA expression of DKK1 and frizzled 6 were greater in F+P than SR (p≤0.05). On day 14, gremlin expression was lower and OPN was greater in the ileum of SR piglets compared to F and F+P. Also on day 14, HNF-4α mRNA expression was greater in both ileum and colon of F+P piglets and sFRP3 mRNA expression was greater in the colon than F or SR . In summary, differences were observed between gene expression of F+P and SR piglet intestines, but the supplementation of 2 g/L scFOS and 2 g/L PDX to formula did not shift expression of genes in the Wnt/BMP pathways to be more similar to SR than F. As the Wnt/BMP pathway is known to exist in a gradient along the crypt-villus axis, with Wnt expression dominating in the crypt region and BMP expression dominating in the villi, it was possible that pooling whole tissue reduced our ability to detect treatment effects that would be concentrated in either region. A method was therefore developed to remove intestinal epithelial cells along the villus-to-crypt axis. Twenty-five-day-old F and SR piglets were euthanized and ileal tissue was collected and placed in a dissociation buffer in a shaking water bath. Exfoliated cells were removed at increasing time points from 5 to 100 minutes in order to remove cells along the villus-to-crypt axis. After the final incubation, remaining mucosal tissue was removed using a sterile glass microscope slide and pooled with the final exfoliated cell isolation. After each cell collection, a section of tissue was fixed in formalin for histomorphological examination. Expression of genes in the Wnt/BMP pathways, along with crypt marker genes (CDK5 and v-myb), were measured in both whole ileal tissue, pooled epithelial cells, and separate epithelial cell isolations from the same piglet. The expression of β-catenin, HNF-4α, TNF-α, TGF-β and the crypt marker v-myb matched the expected villus-to-crypt pattern in cells collected after 10 (incubation 1), 30 (incubation 2) and 60 (incubation 3) minutes. However, expression of expression in cells collected after 100 minutes (incubation 4) was variable, which may be due to the fact that crypt cells were not efficiently removed and the presence of unwanted non-epithelial tissue. Gremlin, OPN, DKK1, sFRP3 and sFRP4 expression was not statistically different along the villus-to-crypt axis. Frizzled 6 and CDK5 did not express as we had predicted, with expression highest towards the villi. In summary, the epithelial cell collection method used was not entirely successful. While much of the gene data suggests that cells were removed along the villus-to-crypt axis through the first three incubations, the last incubation, which involved scraping the tissue, removed non-epithelial components of the mucosa, while leaving the crypts intact. In conclusion, the addition of 2 g/L PDX and 2 g/L scFOS did not cause gene expression of the Wnt/BMP pathways to mirror either F or SR expression. New isolation methods to extract cells along the crypt-villus axis should be considered, including the use of a laser capture microdissection. While this combination of prebiotics did not yield the intended effects, future research should be done on other combinations, such as the inclusion of galactooligosaccharides (GOS), which is commonly added to food products including infant formula.
Resumo:
The emergence of mass spectrometry-based proteomics has revolutionized the study of proteins and their abundances, functions, interactions, and modifications. However, in a multicellular organism, it is difficult to monitor dynamic changes in protein synthesis in a specific cell type within its native environment. In this thesis, we describe methods that enable the metabolic labeling, purification, and analysis of proteins in specific cell types and during defined periods in live animals. We first engineered a eukaryotic phenylalanyl-tRNA synthetase (PheRS) to selectively recognize the unnatural L-phenylalanine analog p-azido-L-phenylalanine (Azf). Using Caenorhabditis elegans, we expressed the engineered PheRS in a cell type of choice (i.e. body wall muscles, intestinal epithelial cells, neurons, pharyngeal muscles), permitting proteins in those cells -- and only those cells -- to be labeled with azides. Labeled proteins are therefore subject to "click" conjugation to cyclooctyne-functionalized affnity probes, separation from the rest of the protein pool and identification by mass spectrometry. By coupling our methodology with heavy isotopic labeling, we successfully identified proteins -- including proteins with previously unknown expression patterns -- expressed in targeted subsets of cells. While cell types like body wall or pharyngeal muscles can be targeted with a single promoter, many cells cannot; spatiotemporal selectivity typically results from the combinatorial action of multiple regulators. To enhance spatiotemporal selectivity, we next developed a two-component system to drive overlapping -- but not identical -- patterns of expression of engineered PheRS, restricting labeling to cells that express both elements. Specifically, we developed a split-intein-based split-PheRS system for highly efficient PheRS-reconstitution through protein splicing. Together, these tools represent a powerful approach for unbiased discovery of proteins uniquely expressed in a subset of cells at specific developmental stages.
Resumo:
Les patients atteints de maladies inflammatoires de l'intestin (MII) ont un risque accru de développer un cancer colorectal dû aux lésions épithéliales secondaires à l’inflammation chronique. La vitamine D (vD) régule NOD2, gène impliqué dans la réponse inflammatoire et dans la susceptibilité aux MII, et induit son expression dans les monocytes et dans l’épithélium intestinal. Dans ce projet, nous avons d’abord induit le cancer colorectal associé à la colite ulcéreuse (CAC) en administrant un traitement combiné d’azoxyméthane (AOM) et de dextran de sulfate de sodium (DSS) aux souris C57BL/6J. Par la suite, nous avons étudié l'effet d’une carence en vD3 sur le développement du CAC et évalué la capacité préventive d’une supplémentation en vD3 sur la tumorigenèse, et vérifié si cet effet est médié par NOD2, en utilisant les souris Nod2-/-. Les C57BL/6J et les Nod2-/-, ayant reçu une diète déficiente en vD3, étaient moins résistantes au CAC par rapport aux souris supplémentées. Le pourcentage de perte de poids, l’indice d’activation de la maladie (DAI), le taux de mortalité et le poids relatif du côlon (mg/cm) chez les souris déficientes en vD3 étaient plus élevés en comparaison avec celles supplémentées en vD3. Une augmentation du score d'inflammation et de la multiplicité tumorale corrélait avec une expression accentuée de l’Il6 dans les colonocytes des souris déficientes en vD3. La vD3 régulait l’expression génétique de Cyp24, Vdr et de gènes pro-inflammatoires chez les C57BL/6, comme chez les Nod2-/-. En conclusion, la supplémentation en vD3 peut prévenir le développement du CAC indépendamment de NOD2.
Resumo:
Les patients atteints de maladies inflammatoires de l'intestin (MII) ont un risque accru de développer un cancer colorectal dû aux lésions épithéliales secondaires à l’inflammation chronique. La vitamine D (vD) régule NOD2, gène impliqué dans la réponse inflammatoire et dans la susceptibilité aux MII, et induit son expression dans les monocytes et dans l’épithélium intestinal. Dans ce projet, nous avons d’abord induit le cancer colorectal associé à la colite ulcéreuse (CAC) en administrant un traitement combiné d’azoxyméthane (AOM) et de dextran de sulfate de sodium (DSS) aux souris C57BL/6J. Par la suite, nous avons étudié l'effet d’une carence en vD3 sur le développement du CAC et évalué la capacité préventive d’une supplémentation en vD3 sur la tumorigenèse, et vérifié si cet effet est médié par NOD2, en utilisant les souris Nod2-/-. Les C57BL/6J et les Nod2-/-, ayant reçu une diète déficiente en vD3, étaient moins résistantes au CAC par rapport aux souris supplémentées. Le pourcentage de perte de poids, l’indice d’activation de la maladie (DAI), le taux de mortalité et le poids relatif du côlon (mg/cm) chez les souris déficientes en vD3 étaient plus élevés en comparaison avec celles supplémentées en vD3. Une augmentation du score d'inflammation et de la multiplicité tumorale corrélait avec une expression accentuée de l’Il6 dans les colonocytes des souris déficientes en vD3. La vD3 régulait l’expression génétique de Cyp24, Vdr et de gènes pro-inflammatoires chez les C57BL/6, comme chez les Nod2-/-. En conclusion, la supplémentation en vD3 peut prévenir le développement du CAC indépendamment de NOD2.
Resumo:
The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.
Resumo:
The single-layered gut epithelium represents the primary line of defense against environmental stressors; thereby monolayer integrity and tightness are essentially required to maintain gut health and function. To date only a few plant-derived phytochemicals have been described as affecting intestinal barrier function. We investigated the impact of 28 secondary plant compounds on the barrier function of intestinal epithelial CaCo-2/TC-7 cells via transepithelial electrical resistance (TEER) measurements. Apart from genistein, the compounds that had the biggest effect in the TEER measurements were biochanin A and prunetin. These isoflavones improved barrier tightness by 36 and 60%, respectively, compared to the untreated control. Furthermore, both isoflavones significantly attenuated TNFα-dependent barrier disruption, thereby maintaining a high barrier resistance comparable to nonstressed cells. In docking analyses exploring the putative interaction with the tyrosine kinase EGFR, these novel modulators of barrier tightness showed very similar values compared to the known tyrosine kinase inhibitor genistein. Both biochanin A and prunetin were also identified as potent reducers of NF-κB and ERK activation, zonula occludens 1 tyrosine phosphorylation, and metalloproteinase-mediated shedding activity, which may account for the barrier-improving ability of these isoflavones.
Resumo:
In rabbit ligated ileal loops, two atypical enteropathogenic Escherichia coli (aEPEC) strains, 3991-1 and 0421-1, intimately associated with the cell membrane, forming the characteristic EPEC attachment and effacement lesion of the brush border, induced a mucous hypersecretion, whereas typical EPEC (tEPEC) strain E2348/69 did not. Using cultured human mucin-secreting intestinal HT29-MTX cells, we demonstrate that apically aEPEC infection is followed by increased production of secreted MUC2 and MUC5AC mucins and membrane-bound MUC3 and MUC4 mucins. The transcription of the MUC5AC and MUC4 genes was transiently upregulated after aEPEC infection. We provide evidence that the apically adhering aEPEC cells exploit the mucins` increased production since they grew in the presence of membrane-bound mucins, whereas tEPEC did not. The data described herein report a putative new virulence phenomenon in aEPEC.
Resumo:
Transmembrane mucins are glycoproteins involved in barrier function in epithelial tissues. To identify novel transmembrane mucin genes, we performed a tblastn search of the GenBank(TM) EST data bases with a serine/ threonine-rich search string, and a rodent gene expressed in bone marrow was identified. We determined the cDNA sequence of the human orthologue of this gene, MUC13, which localizes to chromosome band 3q13.3 and generates 3.2-kilobase pair transcripts encoding a 512-amino acid protein comprised of an N-terminal mucin repeat domain, three epidermal growth factor-like sequences, a SEA module, a transmembrane domain, and a cytoplasmic tail (GenBank(TM) accession no. AF286113), MUC13 mRNA is expressed most highly in the large intestine and trachea, and at moderate levels in the kidney, small intestine, appendix, and stomach, In situ hybridization in murine tissues revealed expression in intestinal epithelial and lymphoid cells. Immunohistochemistry demonstrated the human MUC13 protein on the apical membrane of both columnar and goblet cells in the gastrointestinal tract, as well as within goblet cell thecae, indicative of secretion in addition to presence on the cell surface. MUC13 is cleaved, and the beta -subunit containing the cytoplasmic tail undergoes homodimerization, Including MUC13, there are at least five cell surface mucins expressed in the gastrointestinal tract.