433 resultados para Intermetallic precipitates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La corrosión bajo tensiones (SCC) es un problema de gran importancia en las aleaciones de aluminio de máxima resistencia (serie Al-Zn-Mg-Cu). La utilización de tratamientos térmicos sobremadurados, en particular el T73, ha conseguido prácticamente eliminar la susceptibilidad a corrosión bajo tensiones en dichas aleaciones pero a costa de reducir su resistencia mecánica. Desde entonces se ha tratado de optimizar simultáneamente ambos comportamientos, encontrándose para ello diversos inconvenientes entre los que destacan: la dificultad de medir experimentalmente el crecimiento de grieta por SCC, y el desconocimiento de las causas y el mecanismo por el cual se produce la SCC. Los objetivos de esta Tesis son mejorar el sistema de medición de grietas y profundizar en el conocimiento de la SCC, con el fin de obtener tratamientos térmicos que aúnen un óptimo comportamiento tanto en SCC como mecánico en las aleaciones de aluminio de máxima resistencia utilizadas en aeronáutica. Para conseguir los objetivos anteriormente descritos se han realizado unos cuarenta tratamientos térmicos diferentes, de los cuales la gran mayoría son nuevos, para profundizar en el conocimiento de la influencia de la microestructura (fundamentalmente, de los precipitados coherentes) en el comportamiento de las aleaciones Al-Zn-Mg-Cu, y estudiar la viabilidad de nuevos tratamientos apoyados en el conocimiento adquirido. Con el fin de obtener unos resultados aplicables a productos o semiproductos de aplicación aeronáutica, los tratamientos térmicos se han realizado a trozos grandes de una plancha de 30 mm de espesor de la aleación de aluminio 7475, muy utilizada en las estructuras aeronáuticas. Asimismo con el objeto de conseguir una mayor fiabilidad de los resultados obtenidos se han utilizado, normalmente, tres probetas de cada tratamiento para los diferentes ensayos realizados. Para la caracterización de dichos tratamientos se han utilizado diversas técnicas: medida de dureza y conductividad eléctrica, ensayos de tracción, calorimetría diferencial de barrido (DSC), metalografía, fractografía, microscopia electrónica de transmisión (MET) y de barrido (MEB), y ensayos de crecimiento de grieta en probeta DCB, que a su vez han permitido hacer una estimación del comportamiento en tenacidad del material. Las principales conclusiones del estudio realizado se pueden resumir en las siguientes: Se han diseñado y desarrollado nuevos métodos de medición de grieta basados en el empleo de la técnica de ultrasonidos, que permiten medir el crecimiento de grieta por corrosión bajo tensiones con la precisión y fiabilidad necesarias para valorar adecuadamente la susceptibilidad a corrosión bajo tensiones. La mejora de medida de la posición del frente de grieta ha dado lugar, entre otras cosas, a la definición de un nuevo ensayo a iniciación en probetas preagrietadas. Asimismo, se ha deducido una nueva ecuación que permite calcular el factor de intensidad de tensiones existente en punta de grieta en probetas DCB teniendo en cuenta la influencia de la desviación del plano de crecimiento de la grieta del plano medio de la probeta. Este aspecto ha sido determinante para poder explicar los resultados experimentales obtenidos ya que el crecimiento de la grieta por un plano paralelo al plano medio de la probeta DCB pero alejado de él reduce notablemente el factor de intensidades de tensiones que actúa en punta de grieta y modifica las condiciones reales del ensayo. Por otro lado, se han identificado los diferentes constituyentes de la microestructura de precipitación de todos los tratamientos térmicos estudiados y, en especial, se ha conseguido constatar (mediante MET y DSC) la existencia de zonas de Guinier-Preston del tipo GP(II) en la microestructura de numerosos tratamientos térmicos (no descrita en la bibliografía para las aleaciones del tipo de la estudiada) lo que ha permitido establecer una nueva interpretación de la evolución de la microestructura en los diferentes tratamientos. Al hilo de lo anterior, se han definido nuevas secuencias de precipitación para este tipo de aleaciones, que han permitido entender mejor la constitución de la microestructura y su relación con las propiedades en los diferentes tratamientos térmicos estudiados. De igual manera, se ha explicado el papel de los diferentes microconstituyentes en diversas propiedades mecánicas (propiedades a tracción, dureza y tenacidad KIa); en particular, el estudio realizado de la relación de la microestructura con la tenacidad KIa es inédito. Por otra parte, se ha correlacionado el comportamiento en corrosión bajo tensiones, tanto en la etapa de incubación de grieta como en la de propagación, con las características medidas de los diferentes constituyentes microestructurales de los tratamientos térmicos ensayados, tanto de interior como de límite de grano, habiéndose obtenido que la microestructura de interior de grano tiene una mayor influencia en el comportamiento en corrosión bajo tensiones que la de límite de grano. De forma especial, se ha establecido la importancia capital, y muy negativa, de la presencia en la microestructura de zonas de Guinier-Preston en el crecimiento de la grieta por corrosión bajo tensiones. Finalmente, como consecuencia de todo lo anterior, se ha propuesto un nuevo mecanismo por el que se produce la corrosión bajo tensiones en este tipo de aleaciones de aluminio, y que de forma muy resumida se puede concretar lo siguiente: la acumulación de hidrógeno (formado, básicamente, por un proceso corrosivo de disolución anódica) delante de la zonas GP (en especial, de las zonas GP(I)) próximas a la zona libre de precipitados que se desarrolla alrededor del límite de grano provoca enfragilización local y causa el rápido crecimiento de grieta característico de algunos tratamientos térmicos de este tipo de aleaciones. ABSTRACT The stress corrosion cracking (SCC) is a major problem in the aluminum alloys of high resistance (series Al-Zn-Mg-Cu). The use of overaged heat treatments, particularly T73 has achieved virtually eliminate the susceptibility to stress corrosion cracking in such alloys but at the expense of reducing its mechanical strength. Since then we have tried to simultaneously optimize both behaviors, several drawbacks found for it among them: the difficulty of measuring experimentally the SCC crack growth, and ignorance of the causes and the mechanism by which SCC occurs. The objectives of this thesis are to improve the measurement system of cracks and deeper understanding of the SCC, in order to obtain heat treatments that combine optimum performance in both SCC and maximum mechanical strength in aluminum alloys used in aerospace To achieve the above objectives have been made about forty different heat treatments, of which the vast majority are new, to deepen the understanding of the influence of microstructure (mainly of coherent precipitates) in the behavior of the alloys Al -Zn-Mg-Cu, and study the feasibility of new treatments supported by the knowledge gained. To obtain results for products or semi-finished aircraft application, heat treatments were performed at a large pieces plate 30 mm thick aluminum alloy 7475, widely used in aeronautical structures. Also in order to achieve greater reliability of the results obtained have been used, normally, three specimens of each treatment for various tests. For the characterization of these treatments have been used several techniques: measurement of hardness and electrical conductivity, tensile testing, differential scanning calorimetry (DSC), metallography, fractography, transmission (TEM) and scanning (SEM) electron microscopy, and crack growth tests on DCB specimen, which in turn have allowed to estimate the behavior of the material in fracture toughness. The main conclusions of the study can be summarized as follows: We have designed and developed new methods for measuring crack based on the use of the ultrasound technique, for measuring the growth of stress corrosion cracks with the accuracy and reliability needed to adequately assess the susceptibility to stress corrosion. Improved position measurement of the crack front has resulted, among other things, the definition of a new initiation essay in pre cracked specimens. Also, it has been inferred a new equation to calculate the stress intensity factor in crack tip existing in DCB specimens considering the influence of the deviation of the plane of the crack growth of the medium plane of the specimen. This has been crucial to explain the experimental results obtained since the crack growth by a plane parallel to the medium plane of the DCB specimen but away from it greatly reduces the stress intensity factor acting on the crack tip and modifies the actual conditions of the essay. Furthermore, we have identified the various constituents of the precipitation microstructure of all heat treatments studied and, in particular note has been achieved (by TEM and DSC) the existence of the type GP (II) of Guinier-Preston zones in the microstructure of several heat treatments (not described in the literature for alloys of the type studied) making it possible to establish a new interpretation of the evolution of the microstructure in the different treatments. In line with the above, we have defined new precipitation sequences for these alloys, which have allowed a better understanding of the formation of the microstructure in relation to the properties of different heat treatments studied. Similarly, explained the role of different microconstituents in various mechanical properties (tensile properties, hardness and toughness KIa), in particular, the study of the relationship between the tenacity KIa microstructure is unpublished. Moreover, has been correlated to the stress corrosion behavior, both in the incubation step as the crack propagation, with the measured characteristics of the various microstructural constituents heat treatments tested, both interior and boundary grain, having obtained the internal microstructure of grain has a greater influence on the stress corrosion cracking behavior in the grain boundary. In a special way, has established the importance, and very negative, the presence in the microstructure of Guinier-Preston zones in crack growth by stress corrosion. Finally, following the above, we have proposed a new mechanism by which stress corrosion cracking occurs in this type of aluminum alloy, and, very briefly, one can specify the following: the accumulation of hydrogen (formed basically by a corrosive process of anodic dissolution) in front of the GP zones (especially the GP (I) zones) near the precipitates free zone that develops around grain boundary causes local embrittlement which characterizes rapid crack growth of some heat treatments such alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extraction of metal impurities during phosphorus diffusion gettering (PDG) is one of the crucial process steps when fabricating high-efficiency solar cells using low-cost, lower-purity silicon wafers. In this work, we show that for a given metal concentration, the size and density of metal silicide precipitates strongly influences the gettering efficacy. Different precipitate size distributions can be already found in silicon wafers grown by different techniques. In our experiment, however, the as-grown distribution of precipitated metals in multicrystalline Si sister wafers is engineered through different annealing treatments in order to control for the concentration and distribution of other defects. A high density of small precipitates is formed during a homogenization step, and a lower density of larger precipitates is formed during extended annealing at 740º C. After PDG, homogenized samples show a decreased interstitial iron concentration compared to as-grown and ripened samples, in agreement with simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reliability of Pb-free solder joints is controlled by their microstructural constituents. Therefore, knowledge of the solder microconstituents’ mechanical properties as a function of temperature is required. Sn-Ag-Cu lead-free solder alloy contains three phases: a Sn-rich phase, and the intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn. Typically, the Sn-rich phase is surrounded by a eutectic mixture of β-Sn, Cu6Sn5, and Ag3Sn. In this paper, we report on the Young’s modulus and hardness of the Cu6Sn5 and Cu3Sn IMCs, the β-Sn phase, and the eutectic compound, as measured by nanoindentation at elevated temperatures. For both the β-Sn phase and the eutectic compound, the hardness and Young’s modulus exhibited strong temperature dependence. In the case of the intermetallics, this temperature dependence is observed for Cu6Sn5, but the mechanical properties of Cu3Sn are more stable up to 200°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the applied stress on the deformation and crack nucleation and propagation mechanisms of a c-TiAl intermetallic alloy (Ti-45Al-2Nb-2Mn (at. pct)-0.8 vol. pct TiB2) was examined by means of in situ tensile (constant strain rate) and tensile-creep (constant load) experiments performed at 973 K (700 �C) using a scanning electron microscope. Colony boundary cracking developed during the secondary stage in creep tests at 300 and 400 MPa and during the tertiary stage of the creep tests performed at higher stresses. Colony boundary cracking was also observed in the constant strain rate tensile test. Interlamellar ledges were only found during the tensile-creep tests at high stresses (r>400 MPa) and during the constant strain rate tensile test. Quantitative measurements of the nature of the crack propagation path along secondary cracks and along the primary crack indicated that colony boundaries were preferential sites for crack propagation under all the conditions investigated. The frequency of interlamellar cracking increased with stress, but this fracture mechanism was always of secondary importance. Translamellar cracking was only observed along the primary crack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wide experimental evidence of the phosphorus diffusion gettering beneficial effect on solar grade silicon is found by measuring electron effective lifetime and interstitial iron concentration in as-grown and post processed samples from two ingots of upgraded metallurgical grade silicon produced by Ferrosolar. Results after two different P-diffusion processes are compared: P emitter diffusion at 850ºC followed by fast cool-down (called “standard process”) or followed by slow cool-down (called “extended process”). It is shown that final lifetimes of this low cost material are in the range of those obtained with conventional material. The extended process can be beneficial for wafers with specific initial distribution and concentration of iron, e.g. materials with high concentration of big Fe precipitates, while for other cases the standard process is enough efficient. An analysis based on the comparison of measured lifetime and dissolved iron concentration with theoretical calculations helps to infer the initial iron distribution and concentration, and according to that, choose the more effective type of gettering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to contribute to a further understanding of the fundamentals of crystallographic slip and grain boundary sliding in the γ-TiAl Ti–45Al–2Nb–2Mn (at%)–0.8 vol%TiB2 intermetallic alloy, by means of in situ high-temperature tensile testing combined with electron backscatter diffraction (EBSD). Several microstructures, containing different fractions and sizes of lamellar colonies and equiaxed γ-grains, were fabricated by either centrifugal casting or powder metallurgy, followed by heat treatment at 1300 °C and furnace cooling. in situ tensile and tensile-creep experiments were performed in a scanning electron microscope (SEM) at temperatures ranging from 580 °C to 700 °C. EBSD was carried out in selected regions before and after straining. Our results suggest that, during constant strain rate tests, true twin γ/γ interfaces are the weakest barriers to dislocations and, thus, that the relevant length scale might be influenced by the distance between non-true twin boundaries. Under creep conditions both grain/colony boundary sliding (G/CBS) and crystallographic slip are observed to contribute to deformation. The incidence of boundary sliding is particularly high in γ grains of duplex microstructures. The slip activity during creep deformation in different microstructures was evaluated by trace analysis. Special emphasis was placed in distinguishing the compliance of different slip events with the Schmid law with respect to the applied stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se ha estudiado el acero inoxidable pulvimetalúrgico AISI 430L, comparando la sinterización en dos atmósferas diferentes; en vacío, y en una atmósfera que contiene nitrógeno. Se ha desarrollado un tratamiento térmico con objeto de incrementar las propiedades mecánicas, mediante la modificación microestructural de los nitruros complejos de hierro y cromo precipitados durante la etapa de sinterización. Se han evaluado las propiedades físicas y a la vez se ha realizado un análisis microestructural con el fin de relacionar la microestructura con el incremento en las propiedades mecánicas. Influence of sintering atmosphere on the mechanical properties of steel P / M AISI 430L. It has studied the stainless steel powder metallurgy AISI 430L. It has compared the sintering in two different atmospheres; in vacuum, and in an atmosphere containing nitrogen. It has developed a heat treatment with the aim of improving the mechanical properties. This has been done through microstructural modification of complex nitrides of iron and chromium precipitates during the phase of sintering. Physical properties have been evaluated and are been performing a microstructural analysis for microstructure related to the increase in mechanical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, high-performance multicrystalline silicon (HPMC-Si) has emerged as an attractive alternative to traditional ingot-based multicrystalline silicon (mc-Si), with a similar cost structure but improved cell performance. Herein, we evaluate the gettering response of traditional mc-Si and HPMC-Si. Microanalytical techniques demonstrate that HPMC-Si and mc-Si share similar lifetime-limiting defect types but have different relative concentrations and distributions. HPMC-Si shows a substantial lifetime improvement after P-gettering compared with mc-Si, chiefly because of lower area fraction of dislocation-rich clusters. In both materials, the dislocation clusters and grain boundaries were associated with relatively higher interstitial iron point-defect concentrations after diffusion, which is suggestive of dissolving metal-impurity precipitates. The relatively fewer dislocation clusters in HPMC-Si are shown to exhibit similar characteristics to those found in mc-Si. Given similar governing principles, a proxy to determine relative recombination activity of dislocation clusters developed for mc-Si is successfully transferred to HPMC-Si. The lifetime in the remainder of HPMC-Si material is found to be limited by grain-boundary recombination. To reduce the recombination activity of grain boundaries in HPMC-Si, coordinated impurity control during growth, gettering, and passivation must be developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously developed a novel technique for isolation of cDNAs encoding M phase phosphoproteins (MPPs). In the work described herein, we further characterize MPP10, one of 10 novel proteins that we identified, with regard to its potential nucleolar function. We show that by cell fractionation, almost all MPP10 was found in isolated nucleoli. By immunofluorescence, MPP10 colocalized with nucleolar fibrillarin and other known nucleolar proteins in interphase cells but was not detected in the coiled bodies stained for either fibrillarin or p80 coilin, a protein found only in the coiled body. When nucleoli were separated into fibrillar and granular domains by treatment with actinomycin D, almost all the MPP10 was found in the fibrillar caps, which contain proteins involved in rRNA processing. In early to middle M phase of the cell cycle, MPP10 colocalized with fibrillarin to chromosome surfaces. At telophase, MPP10 was found in cellular structures that resembled nucleolus-derived bodies and prenucleolar bodies. Some of these bodies lacked fibrillarin, a previously described component of nucleolus-derived bodies and prenucleolar bodies, however, and the bulk of MPP10 arrived at the nucleolus later than fibrillarin. To further examine the properties of MPP10, we immunoprecipitated it from cell sonicates. The resulting precipitates contained U3 small nucleolar RNA (snoRNA) but no significant amounts of other box C/D snoRNAs. This association of MPP10 with U3 snoRNA was stable to 400 mM salt and suggested that MPP10 is a component of the human U3 small nucleolar ribonucleoprotein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coatomer is the soluble precursor of the COPI coat (coat protein I) involved in traffic among membranes of the endoplasmic reticulum and the Golgi apparatus. We report herein that neomycin precipitates coatomer from cell extracts and from purified coatomer preparations. Precipitation first increased and then decreased as the neomycin concentration increased, analogous to the precipitation of a polyvalent antigen by divalent antibodies. This suggested that neomycin cross-linked coatomer into large aggregates and implies that coatomer has two or more binding sites for neomycin. A variety of other aminoglycoside antibiotics precipitated coatomer, or if they did not precipitate, they interfered with the ability of neomycin to precipitate. Coatomer is known to interact with a motif (KKXX) containing adjacent lysine residues at the carboxyl terminus of the cytoplasmic domains of some membrane proteins resident in the endoplasmic reticulum. All of the antibiotics that interacted with coatomer contain at least two close amino groups, suggesting that the antibiotics might be interacting with the di-lysine binding site of coatomer. Consistent with this idea, di-lysine itself blocked the interaction of antibiotics with coatomer. Moreover, di-lysine and antibiotics each blocked the coating of Golgi membranes by coatomer. These data suggest that certain aminoglycoside antibiotics interact with di-lysine binding sites on coatomer and that coatomer contains at least two of these di-lysine binding sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Epstein–Barr virus (EBV) nuclear protein 2 (EBNA2) and herpes simplex virion protein 16 (VP16) acidic domains that mediate transcriptional activation now are found to have affinity for p300, CBP, and PCAF histone acetyltransferases (HATs). Transcriptionally inactive point mutations in these domains lack affinity for p300, CBP, or PCAF. P300 and CBP copurify with the principal HAT activities that bind to EBNA2 or VP16 acidic domains through velocity sedimentation and anion-exchange chromatography. EBNA2 binds to both the N- and C-terminal domains of p300 and coimmune-precipitates from transfected 293T cells with p300. In EBV-infected Akata Burkitt's tumor cells that do not express the EBV encoded oncoproteins EBNA2 or LMP1, p300 expression enhances the ability of EBNA2 to up-regulate LMP1 expression. Through its intrinsic HAT activity, PCAF can further potentiate the p300 effect. In 293 T cells, P300 and CBP (but not PCAF) can also coactivate transcription mediated by the EBNA2 or VP16 acidic domains and HAT-negative mutants of p300 have partial activity. Thus, the EBNA2 and VP16 acidic domains can utilize the intrinsic HAT or scaffolding properties of p300 to activate transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C—H stretching bands, νCH, in the infrared spectrum of single crystals of nominally high purity, of laboratory-grown MgO, and of natural upper mantle olivine, provide an “organic” signature that closely resembles the symmetrical and asymmetrical C—H stretching modes of aliphatic —CH2 units. The νCH bands indicate that H2O and CO2, dissolved in the matrix of these minerals, converted to form H2 and chemically reduced C, which in turn formed C—H entities, probably through segregation into defects such as dislocations. Heating causes the C—H bonds to pyrolyze and the νCH bands to disappear, but annealing at 70°C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to Cx chains, x = 4, with the terminal C atoms anchored to the MgO matrix by bonding to two O−. Allowing H2 to react with such Cx chains leads to [O2C(CH2)2CO2] or similar precipitates. It is suggested that such Cx—Hy—Oz entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus, it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks, the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene encoding the Ras-related GTPase RhoB-specific is immediate-early inducible by genotoxic treatments. Regulation of transcriptional activation of rhoB is still unclear. Here we show that cells lacking either p53 or c-Fos are not different from wild-type cells with respect to the level of rhoB induction upon UV irradiation, indicating that these transcription factors are not crucial for stimulation of rhoB mRNA expression. Extracts from UV-irradiated and non-irradiated cells revealed similar DNA-binding activities to a 0.17 kb rhoB promoter fragment harboring the functional element(s) necessary for stimulation of rhoB by UV light. By means of immunoprecipitation we found that an ATF-2-specific antibody co-precipitates the 32P-labeled 0.17 kb rhoB fragment, whereas an anti-AP1 antibody did not. Since no consensus sequence for binding of ATF-2 is present within the rhoB promoter, ATF-2 is likely to be associated with another factor that binds to the minimal promoter. Deletion analysis and site-directed mutagenesis of the 0.17 kb rhoB fragment revealed a CCAAT box to be an essential requirement for stimulation of rhoB by UV light and methyl methanesulfonate. Moreover, immunoprecipitation experiments showed that the CCAAT-binding factor NF-YA is complexed with ATF-2. Overall, the data strongly indicate that transcriptional activation of the rhoB gene by genotoxic stress is regulated via a CCAAT box and that interaction of CCAAT-binding factor and ATF-2 triggers the stress-inducible expression of rhoB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown that the DNA demethylation complex isolated from chicken embryos has a G⋅T mismatch DNA glycosylase that also possesses 5-methylcytosine DNA glycosylase (5-MCDG) activity. Herein we show that human embryonic kidney cells stably transfected with 5-MCDG cDNA linked to a cytomegalovirus promoter overexpress 5-MCDG. A 15- to 20-fold overexpression of 5-MCDG results in the specific demethylation of a stably integrated ecdysone-retinoic acid responsive enhancer-promoter linked to a β-galactosidase reporter gene. Demethylation occurs in the absence of the ligand ponasterone A (an analogue of ecdysone). The state of methylation of the transgene was investigated by Southern blot analysis and by the bisulfite genomic sequencing reaction. Demethylation occurs downstream of the hormone response elements. No genome-wide demethylation was observed. The expression of an inactive mutant of 5-MCDG or the empty vector does not elicit any demethylation of the promoter-enhancer of the reporter gene. An increase in 5-MCDG activity does not influence the activity of DNA methyltransferase(s) when tested in vitro with a hemimethylated substrate. There is no change in the transgene copy number during selection of the clones with antibiotics. Immunoprecipitation combined with Western blot analysis showed that an antibody directed against 5-MCDG precipitates a complex containing the retinoid X receptor α. The association between retinoid receptor and 5-MCDG is not ligand dependent. These results suggest that a complex of the hormone receptor with 5-MCDG may target demethylation of the transgene in this system.