830 resultados para Interface algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a quantitative comparisons of different independent component analysis (ICA) algorithms in order to investigate their potential use in preprocessing (such as noise reduction and feature extraction) the electroencephalogram (EEG) data for early detection of Alzhemier disease (AD) or discrimination between AD (or mild cognitive impairment, MCI) and age-match control subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agroforestry systems are indicated as an alternative for sugarcane (Saccharum officinarum) cultivation in Piracicaba, SP, Brazil, however there are not many field experiments on plant performance under these conditions in the world. The objective of this work was to assess crop yield and partitioning in a sugarcane-rubber (Hevea brasiliensis) interface in on-farm conditions. The availability of irradiance for the crop along the interface was simulated and its effe ct over sugarcane dry matter production was tested. Crop yield was negatively affected by distance of the trees, but development and sucrose were not affected. Above ground dry matter increased from 16.6 to 51.5 t ha-1 from trees. Partitioning did not have a defined standard, as harvest index increased from 0.85 to 0.93, but specific leaf area was not significant along the transect, ranging from 13.48 to 15.73 m² kg-1. Light is the main factor of competition between the trees and the crop, but the relative importance of below ground interactions increases closer to the trees. Feasibility of the system depends on maturity of the trees and management strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. METHODOLOGY/PRINCIPAL FINDINGS: Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9-92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4-8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. CONCLUSIONS/SIGNIFICANCE: In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes an important seismic attenuation mechanism in porous rocks. As a consequence, centimetre-scale perturbations of the rock physical properties should be taken into account for seismic modelling whenever detailed and accurate responses of specific target structures are desired, which is, however, computationally prohibitive. A convenient way to circumvent this problem is to use an upscaling procedure to replace each of the heterogeneous porous media composing the geological model by corresponding equivalent visco-elastic solids and to solve the visco-elastic equations of motion for the inferred equivalent model. While the overall qualitative validity of this procedure is well established, there are as of yet no quantitative analyses regarding the equivalence of the seismograms resulting from the original poro-elastic and the corresponding upscaled visco-elastic models. To address this issue, we compare poro-elastic and visco-elastic solutions for a range of marine-type models of increasing complexity. We found that despite the identical dispersion and attenuation behaviour of the heterogeneous poro-elastic and the equivalent visco-elastic media, the seismograms may differ substantially due to diverging boundary conditions, where there exist additional options for the poro-elastic case. In particular, we observe that at the fluid/porous-solid interface, the poro- and visco-elastic seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an important result which has potentially far-reaching implications for wave-equation-based algorithms in exploration geophysics involving fluid/porous-solid interfaces, such as, for example, wavefield decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The M-Coffee server is a web server that makes it possible to compute multiple sequence alignments (MSAs) by running several MSA methods and combining their output into one single model. This allows the user to simultaneously run all his methods of choice without having to arbitrarily choose one of them. The MSA is delivered along with a local estimation of its consistency with the individual MSAs it was derived from. The computation of the consensus multiple alignment is carried out using a special mode of the T-Coffee package [Notredame, Higgins and Heringa (T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000; 302: 205-217); Wallace, O'Sullivan, Higgins and Notredame (M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 2006; 34: 1692-1699)] Given a set of sequences (DNA or proteins) in FASTA format, M-Coffee delivers a multiple alignment in the most common formats. M-Coffee is a freeware open source package distributed under a GPL license and it is available either as a standalone package or as a web service from www.tcoffee.org.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random-ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in orderto obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality of the resulting graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focuses on the prediction of the two main nitrogenous variables that describe the water quality at the effluent of a Wastewater Treatment Plant. We have developed two kind of Neural Networks architectures based on considering only one output or, in the other hand, the usual five effluent variables that define the water quality: suspended solids, biochemical organic matter, chemical organic matter, total nitrogen and total Kjedhal nitrogen. Two learning techniques based on a classical adaptative gradient and a Kalman filter have been implemented. In order to try to improve generalization and performance we have selected variables by means genetic algorithms and fuzzy systems. The training, testing and validation sets show that the final networks are able to learn enough well the simulated available data specially for the total nitrogen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. RESULTS: We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i) exhaustive population-genetic analyses including those based on the coalescent theory; ii) analysis adapted to the shallow data generated by the high-throughput genome projects; iii) use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv) identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v) visualization of the results integrated with current genome annotations in commonly available genome browsers. CONCLUSION: VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.