959 resultados para Integrable equations in Physics
Resumo:
Attempts in the past to model the irregularities of the solar cycle (such as the Maunder minimum) were based on studies of the nonlinear feedback of magnetic fields on the dynamo source terms. Since the alpha-coefficient is obtained by averaging over the turbulence, it is expected to have stochastic fluctuations, and we show that these fluctuations can explain the irregularities of the solar cycle in a more satisfactory way. We solve the dynamo equations in a slab with a single mode, taking the alpha-coefficient to be constant in space but fluctuating stochastically in time with some given amplitude and given correlation time. The same level of percentile fluctuations (about 10 %) produces no effect on an alpha-omega dynamo, but makes an alpha-2 dynamo completely chaotic. The level of irregularities in an alpha-2-omega dynamo qualitatively agrees with the solar behavior, reinforcing the conclusion of Choudhuri (1990a) that the solar dynamo is of the alpha-2-omega-type. The irregularities are found to increase on increasing either the amplitude or the correlation time of the stochastic fluctuations. The alpha-quenching mechanism tends to make the system stable against the irregularities and hence it is inferred that the alpha-quenching should not be too strong so that the irregularities are not completely suppressed. We also present a simple-minded analysis to understand why the stochastic fluctuations in the alpha-omega, alpha-2-omega and alpha-2 regimes have such different outcomes.
Resumo:
We comment on a paper by Luang [On the bifurcation in a ''modulated'' logistic map, Physics Letters A 194(1994) 57]. The numerical evidence given in that paper, for a peculiar type of bifurcation, is shown to be incorrect. The causes of such anomalous results are explained. An accurate bifurcation diagram for the map is also given.
Resumo:
Differential scanning calorimetry studies have been performed on GexSb5Se95-x (12.5≤x≤35) and GexSb10Se90-x (10≤x≤32.5) glasses. The observed dependence of the glass transition temperature on the mean coordination number
Resumo:
Bulk glasses of Ge(20)Se(80-x)ln(x) (O less than or equal to x less than or equal to 18) have been used for measurements of heat capacity at constant pressure (C-p) using a differential scanning calorimeter. These measurements reveal the chemical threshold in these glasses as a function of composition. The results are discussed in the light of microscopic phase separation in these glasses.
Resumo:
Several ''extraordinary'' differential equations are considered for their solutions via the decomposition method of Adomian. Verifications are made with the solutions obtained by other methods.
Resumo:
The physics potential of e(+) e(-) linear colliders is summarized in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, i.e. compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders lip to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e(+) e(-) linear colliders and the high precision with which the properties of particles and their interactions can be analyzed, define an exciting physics program complementary to hadron machines. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Electrical conductivity and dielectric relaxation studies with a wide range of compositions of lithium ion conducting glasses belonging to the ternary glass system Li2SO4-Li2O-B2-O3- have been carried out over the temperature range 150-450 K and between 10 - 10(7) Hz. DC conductivities exhibit two different activation regions. This seems to suggest the presence of a cluster tissue texture in these glasses with weakly ordered clusters of Li2SO4 and lithium berates being held together by a truly amorphous tissue of the same average composition as clusters. AC conductivity behaviour of these glasses has been analysed using both power law and stretched exponential relaxation functions. The variation of the power law exponent s and the stretched exponent beta with temperature seems to be consistent with the presence of a cluster tissue texture in these glasses.
Resumo:
At an e gamma collider, a selectron (e) over tilde(L,R) may be produced in association with a (lightest) neutralino <(chi)over tilde>(0)(1). Decay of the selectron may be expected to yield a final state with an electron and another <(chi)over tilde>(0)(1). If R-parity is violated, these two neutralinos will decay, giving rise to distinctive signatures, which are identified and studied. (C) 1998 Published by Elsevier Science B.V.
Resumo:
The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper we analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. We first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. We show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, we analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, we resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and we show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.
Resumo:
We analyse the Roy equations for the lowest partial waves of elastic ππ scattering. In the first part of the paper, we review the mathematical properties of these equations as well as their phenomenological applications. In particular, the experimental situation concerning the contributions from intermediate energies and the evaluation of the driving terms are discussed in detail. We then demonstrate that the two S-wave scattering lengths a00 and a02 are the essential parameters in the low energy region: Once these are known, the available experimental information determines the behaviour near threshold to within remarkably small uncertainties. An explicit numerical representation for the energy dependence of the S- and P-waves is given and it is shown that the threshold parameters of the D- and F-waves are also fixed very sharply in terms of a00 and a20. In agreement with earlier work, which is reviewed in some detail, we find that the Roy equations admit physically acceptable solutions only within a band of the (a00,a02) plane. We show that the data on the reactions e+e−→ππ and τ→ππν reduce the width of this band quite significantly. Furthermore, we discuss the relevance of the decay K→ππeν in restricting the allowed range of a00, preparing the grounds for an analysis of the forthcoming precision data on this decay and on pionic atoms. We expect these to reduce the uncertainties in the two basic low energy parameters very substantially, so that a meaningful test of the chiral perturbation theory predictions will become possible.
Resumo:
We derive bounds on leptonic double mass insertions of the type delta(l)(i4)delta(l)(4j) in four generational MSSM, using the present limits on l(i) -> l(j) + gamma. Two main features distinguish the rates of these processes in MSSM4 from MSSM3: (a) tan beta is restricted to be very small less than or similar to 3 and (b) the large masses for the fourth generation leptons. In spite of small tan beta, there is an enhancement in amplitudes with LLRR (4 delta(ll)(i4)delta(rr)(4j)) type insertions which pick up the mass of the fourth generation lepton, m(tau'). We find these bounds to be at least two orders of magnitude more stringent than those in MSSM3. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A methodology termed the “filtered density function” (FDF) is developed and implemented for large eddy simulation (LES) of chemically reacting turbulent flows. In this methodology, the effects of the unresolved scalar fluctuations are taken into account by considering the probability density function (PDF) of subgrid scale (SGS) scalar quantities. A transport equation is derived for the FDF in which the effect of chemical reactions appears in a closed form. The influences of scalar mixing and convection within the subgrid are modeled. The FDF transport equation is solved numerically via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential equations (SDEs) are obtained. These solutions preserve the Itô-Gikhman nature of the SDEs. The consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance of the closures employed in the FDF transport equation are assessed by comparisons with results obtained by direct numerical simulation (DNS) and by conventional LES procedures in which the first two SGS scalar moments are obtained by a finite difference method (LES-FD). These comparative assessments are conducted by implementations of all three schemes (FDF, DNS and LES-FD) in a temporally developing mixing layer and a spatially developing planar jet under both non-reacting and reacting conditions. In non-reacting flows, the Monte Carlo solution of the FDF yields results similar to those via LES-FD. The advantage of the FDF is demonstrated by its use in reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are significantly different from those based on DNS. The FDF results show a much closer agreement with filtered DNS results. © 1998 American Institute of Physics.
Resumo:
The study of directional derivative lead to the development of a rotationally invariant kinetic upwind method (KUMARI)3 which avoids dimension by dimension splitting. The method is upwind and rotationally invariant and hence truly multidimensional or multidirectional upwind scheme. The extension of KUMARI to second order is as well presented.
Resumo:
In this paper we have developed methods to compute maps from differential equations. We take two examples. First is the case of the harmonic oscillator and the second is the case of Duffing's equation. First we convert these equations to a canonical form. This is slightly nontrivial for the Duffing's equation. Then we show a method to extend these differential equations. In the second case, symbolic algebra needs to be used. Once the extensions are accomplished, various maps are generated. The Poincare sections are seen as a special case of such generated maps. Other applications are also discussed.
Resumo:
Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]