943 resultados para Integer mixed programming
Resumo:
Higher education has a responsibility to educate a democratic citizenry and recent research indicates civic engagement is on the decline in the United States. Through a mixed methodological approach, I demonstrate that the potential exists for well structured short-term international service-learning programming to develop college students’ civic identities. Quantitative analysis of questionnaire data, collected from American college students immediately prior to their participation in a short-term service-learning experience in Northern Ireland and again upon their return to the United States, revealed increases in civic accountability, political efficacy, justice oriented citizenship, and service-learning. Subsequent qualitative analysis of interview transcripts, student journals, and field notes suggested that facilitated critical reflection before, during, and after the experience promoted transformational learning. Emergent themes included: (a) responsibilities to others, (b) the value of international service-learning, (c) crosspollination of ideas, (d) stepping outside the daily routine to facilitate divergent thinking, and (e) the necessity of precursory thinking for sustaining transformations in thinking. The first theme, responsibilities to others, was further divided into subthemes of thinking beyond oneself, raising awareness of responsibility to others, and voting responsibly.
Resumo:
Los sistemas empotrados son cada día más comunes y complejos, de modo que encontrar procesos seguros, eficaces y baratos de desarrollo software dirigidos específicamente a esta clase de sistemas es más necesario que nunca. A diferencia de lo que ocurría hasta hace poco, en la actualidad los avances tecnológicos en el campo de los microprocesadores de los últimos tiempos permiten el desarrollo de equipos con prestaciones más que suficientes para ejecutar varios sistemas software en una única máquina. Además, hay sistemas empotrados con requisitos de seguridad (safety) de cuyo correcto funcionamiento depende la vida de muchas personas y/o grandes inversiones económicas. Estos sistemas software se diseñan e implementan de acuerdo con unos estándares de desarrollo software muy estrictos y exigentes. En algunos casos puede ser necesaria también la certificación del software. Para estos casos, los sistemas con criticidades mixtas pueden ser una alternativa muy valiosa. En esta clase de sistemas, aplicaciones con diferentes niveles de criticidad se ejecutan en el mismo computador. Sin embargo, a menudo es necesario certificar el sistema entero con el nivel de criticidad de la aplicación más crítica, lo que hace que los costes se disparen. La virtualización se ha postulado como una tecnología muy interesante para contener esos costes. Esta tecnología permite que un conjunto de máquinas virtuales o particiones ejecuten las aplicaciones con unos niveles de aislamiento tanto temporal como espacial muy altos. Esto, a su vez, permite que cada partición pueda ser certificada independientemente. Para el desarrollo de sistemas particionados con criticidades mixtas se necesita actualizar los modelos de desarrollo software tradicionales, pues estos no cubren ni las nuevas actividades ni los nuevos roles que se requieren en el desarrollo de estos sistemas. Por ejemplo, el integrador del sistema debe definir las particiones o el desarrollador de aplicaciones debe tener en cuenta las características de la partición donde su aplicación va a ejecutar. Tradicionalmente, en el desarrollo de sistemas empotrados, el modelo en V ha tenido una especial relevancia. Por ello, este modelo ha sido adaptado para tener en cuenta escenarios tales como el desarrollo en paralelo de aplicaciones o la incorporación de una nueva partición a un sistema ya existente. El objetivo de esta tesis doctoral es mejorar la tecnología actual de desarrollo de sistemas particionados con criticidades mixtas. Para ello, se ha diseñado e implementado un entorno dirigido específicamente a facilitar y mejorar los procesos de desarrollo de esta clase de sistemas. En concreto, se ha creado un algoritmo que genera el particionado del sistema automáticamente. En el entorno de desarrollo propuesto, se han integrado todas las actividades necesarias para desarrollo de un sistema particionado, incluidos los nuevos roles y actividades mencionados anteriormente. Además, el diseño del entorno de desarrollo se ha basado en la ingeniería guiada por modelos (Model-Driven Engineering), la cual promueve el uso de los modelos como elementos fundamentales en el proceso de desarrollo. Así pues, se proporcionan las herramientas necesarias para modelar y particionar el sistema, así como para validar los resultados y generar los artefactos necesarios para el compilado, construcción y despliegue del mismo. Además, en el diseño del entorno de desarrollo, la extensión e integración del mismo con herramientas de validación ha sido un factor clave. En concreto, se pueden incorporar al entorno de desarrollo nuevos requisitos no-funcionales, la generación de nuevos artefactos tales como documentación o diferentes lenguajes de programación, etc. Una parte clave del entorno de desarrollo es el algoritmo de particionado. Este algoritmo se ha diseñado para ser independiente de los requisitos de las aplicaciones así como para permitir al integrador del sistema implementar nuevos requisitos del sistema. Para lograr esta independencia, se han definido las restricciones al particionado. El algoritmo garantiza que dichas restricciones se cumplirán en el sistema particionado que resulte de su ejecución. Las restricciones al particionado se han diseñado con una capacidad expresiva suficiente para que, con un pequeño grupo de ellas, se puedan expresar la mayor parte de los requisitos no-funcionales más comunes. Las restricciones pueden ser definidas manualmente por el integrador del sistema o bien pueden ser generadas automáticamente por una herramienta a partir de los requisitos funcionales y no-funcionales de una aplicación. El algoritmo de particionado toma como entradas los modelos y las restricciones al particionado del sistema. Tras la ejecución y como resultado, se genera un modelo de despliegue en el que se definen las particiones que son necesarias para el particionado del sistema. A su vez, cada partición define qué aplicaciones deben ejecutar en ella así como los recursos que necesita la partición para ejecutar correctamente. El problema del particionado y las restricciones al particionado se modelan matemáticamente a través de grafos coloreados. En dichos grafos, un coloreado propio de los vértices representa un particionado del sistema correcto. El algoritmo se ha diseñado también para que, si es necesario, sea posible obtener particionados alternativos al inicialmente propuesto. El entorno de desarrollo, incluyendo el algoritmo de particionado, se ha probado con éxito en dos casos de uso industriales: el satélite UPMSat-2 y un demostrador del sistema de control de una turbina eólica. Además, el algoritmo se ha validado mediante la ejecución de numerosos escenarios sintéticos, incluyendo algunos muy complejos, de más de 500 aplicaciones. ABSTRACT The importance of embedded software is growing as it is required for a large number of systems. Devising cheap, efficient and reliable development processes for embedded systems is thus a notable challenge nowadays. Computer processing power is continuously increasing, and as a result, it is currently possible to integrate complex systems in a single processor, which was not feasible a few years ago.Embedded systems may have safety critical requirements. Its failure may result in personal or substantial economical loss. The development of these systems requires stringent development processes that are usually defined by suitable standards. In some cases their certification is also necessary. This scenario fosters the use of mixed-criticality systems in which applications of different criticality levels must coexist in a single system. In these cases, it is usually necessary to certify the whole system, including non-critical applications, which is costly. Virtualization emerges as an enabling technology used for dealing with this problem. The system is structured as a set of partitions, or virtual machines, that can be executed with temporal and spatial isolation. In this way, applications can be developed and certified independently. The development of MCPS (Mixed-Criticality Partitioned Systems) requires additional roles and activities that traditional systems do not require. The system integrator has to define system partitions. Application development has to consider the characteristics of the partition to which it is allocated. In addition, traditional software process models have to be adapted to this scenario. The V-model is commonly used in embedded systems development. It can be adapted to the development of MCPS by enabling the parallel development of applications or adding an additional partition to an existing system. The objective of this PhD is to improve the available technology for MCPS development by providing a framework tailored to the development of this type of system and by defining a flexible and efficient algorithm for automatically generating system partitionings. The goal of the framework is to integrate all the activities required for developing MCPS and to support the different roles involved in this process. The framework is based on MDE (Model-Driven Engineering), which emphasizes the use of models in the development process. The framework provides basic means for modeling the system, generating system partitions, validating the system and generating final artifacts. The framework has been designed to facilitate its extension and the integration of external validation tools. In particular, it can be extended by adding support for additional non-functional requirements and support for final artifacts, such as new programming languages or additional documentation. The framework includes a novel partitioning algorithm. It has been designed to be independent of the types of applications requirements and also to enable the system integrator to tailor the partitioning to the specific requirements of a system. This independence is achieved by defining partitioning constraints that must be met by the resulting partitioning. They have sufficient expressive capacity to state the most common constraints and can be defined manually by the system integrator or generated automatically based on functional and non-functional requirements of the applications. The partitioning algorithm uses system models and partitioning constraints as its inputs. It generates a deployment model that is composed by a set of partitions. Each partition is in turn composed of a set of allocated applications and assigned resources. The partitioning problem, including applications and constraints, is modeled as a colored graph. A valid partitioning is a proper vertex coloring. A specially designed algorithm generates this coloring and is able to provide alternative partitions if required. The framework, including the partitioning algorithm, has been successfully used in the development of two industrial use cases: the UPMSat-2 satellite and the control system of a wind-power turbine. The partitioning algorithm has been successfully validated by using a large number of synthetic loads, including complex scenarios with more that 500 applications.
Resumo:
En este trabajo se estudia la modelización y optimización de procesos industriales de separación mediante el empleo de mezclas de líquidos iónicos como disolventes. Los disolventes habitualmente empleados en procesos de absorción o extracción suelen ser componentes orgánicos muy volátiles y dañinos para la salud humana. Las innovadoras propiedades que presentan los líquidos iónicos, los convierten en alternativas adecuadas para solucionar estos problemas. La presión de vapor de estos compuestos es muy baja y apenas varía con la temperatura. Por tanto, estos compuestos apenas se evaporan incluso a temperaturas altas. Esto supone una gran ventaja en cuanto al empleo de estos compuestos como disolventes industriales ya que permite el reciclaje continuo del disolvente al final del proceso sin necesidad de introducir disolvente fresco debido a la evaporación del mismo. Además, al no evaporarse, estos compuestos no suponen un peligro para la salud humana por inhalación; al contrario que otros disolventes como el benceno. El único peligro para la salud que tienen estos compuestos es por tanto el de contacto directo o ingesta, aunque de hecho muchos Líquidos Iónicos son inocuos con lo cual no existe peligro para la salud ni siquiera a través de estas vías. Los procesos de separación estudiados en este trabajo, se rigen por la termodinámica de fases, concretamente el equilibrio líquido-vapor. Para la predicción de los equilibrios se ha optado por el empleo de modelos COSMO (COnductor-like Screening MOdel). Estos modelos tienen su origen en el empleo de la termodinámica de solvatación y en la mecánica cuántica. En el desarrollo de procesos y productos, químicos e ingenieros frecuentemente precisan de la realización de cálculos de predicción de equilibrios de fase. Previamente al desarrollo de los modelos COSMO, se usaban métodos de contribución de grupos como UNIFAC o modelos de coeficientes de actividad como NRTL.La desventaja de estos métodos, es que requieren parámetros de interacción binaria que únicamente pueden obtenerse mediante ajustes por regresión a partir de resultados experimentales. Debido a esto, estos métodos apenas tienen aplicabilidad para compuestos con grupos funcionales novedosos debido a que no se dispone de datos experimentales para llevar a cabo los ajustes por regresión correspondientes. Una alternativa a estos métodos, es el empleo de modelos de solvatación basados en la química cuántica para caracterizar las interacciones moleculares y tener en cuenta la no idealidad de la fase líquida. Los modelos COSMO, permiten la predicción de equilibrios sin la necesidad de ajustes por regresión a partir de resultados experimentales. Debido a la falta de resultados experimentales de equilibrios líquido-vapor de mezclas en las que se ven involucrados los líquidos iónicos, el empleo de modelos COSMO es una buena alternativa para la predicción de equilibrios de mezclas con este tipo de materiales. Los modelos COSMO emplean las distribuciones superficiales de carga polarizada (sigma profiles) de los compuestos involucrados en la mezcla estudiada para la predicción de los coeficientes de actividad de la misma, definiéndose el sigma profile de una molécula como la distribución de probabilidad de densidad de carga superficial de dicha molécula. Dos de estos modelos son COSMO-RS (Realistic Solvation) y COSMO-SAC (Segment Activity Coefficient). El modelo COSMO-RS fue la primera extensión de los modelos de solvatación basados en continuos dieléctricos a la termodinámica de fases líquidas mientras que el modelo COSMO-SAC es una variación de este modelo, tal y como se explicará posteriormente. Concretamente en este trabajo se ha empleado el modelo COSMO-SAC para el cálculo de los coeficientes de actividad de las mezclas estudiadas. Los sigma profiles de los líquidos iónicos se han obtenido mediante el empleo del software de química computacional Turbomole y el paquete químico-cuántico COSMOtherm. El software Turbomole permite optimizar la geometría de la molécula para hallar la configuración más estable mientras que el paquete COSMOtherm permite la obtención del perfil sigma del compuesto mediante el empleo de los datos proporcionados por Turbomole. Por otra parte, los sigma profiles del resto de componentes se han obtenido de la base de datos Virginia Tech-2005 Sigma Profile Database. Para la predicción del equilibrio a partir de los coeficientes de actividad se ha empleado la Ley de Raoult modificada. Se ha supuesto por tanto que la fracción de cada componente en el vapor es proporcional a la fracción del mismo componente en el líquido, dónde la constante de proporcionalidad es el coeficiente de actividad del componente en la mezcla multiplicado por la presión de vapor del componente y dividido por la presión del sistema. Las presiones de vapor de los componentes se han obtenido aplicando la Ley de Antoine. Esta ecuación describe la relación entre la temperatura y la presión de vapor y se deduce a partir de la ecuación de Clausius-Clapeyron. Todos estos datos se han empleado para la modelización de una separación flash usando el algoritmo de Rachford-Rice. El valor de este modelo reside en la deducción de una función que relaciona las constantes de equilibrio, composición total y fracción de vapor. Para llevar a cabo la implementación del modelado matemático descrito, se ha programado un código empleando el software MATLAB de análisis numérico. Para comprobar la fiabilidad del código programado, se compararon los resultados obtenidos en la predicción de equilibrios de mezclas mediante el código con los resultados obtenidos mediante el simulador ASPEN PLUS de procesos químicos. Debido a la falta de datos relativos a líquidos iónicos en la base de datos de ASPEN PLUS, se han introducido estos componentes como pseudocomponentes, de manera que se han introducido únicamente los datos necesarios de estos componentes para realizar las simulaciones. El modelo COSMO-SAC se encuentra implementado en ASPEN PLUS, de manera que introduciendo los sigma profiles, los volúmenes de la cavidad y las presiones de vapor de los líquidos iónicos, es posible predecir equilibrios líquido-vapor en los que se ven implicados este tipo de materiales. De esta manera pueden compararse los resultados obtenidos con ASPEN PLUS y como el código programado en MATLAB y comprobar la fiabilidad del mismo. El objetivo principal del presente Trabajo Fin de Máster es la optimización de mezclas multicomponente de líquidos iónicos para maximizar la eficiencia de procesos de separación y minimizar los costes de los mismos. La estructura de este problema es la de un problema de optimización no lineal con variables discretas y continuas, es decir, un problema de optimización MINLP (Mixed Integer Non-Linear Programming). Tal y como se verá posteriormente, el modelo matemático de este problema es no lineal. Por otra parte, las variables del mismo son tanto continuas como binarias. Las variables continuas se corresponden con las fracciones molares de los líquidos iónicos presentes en las mezclas y con el caudal de la mezcla de líquidos iónicos. Por otra parte, también se ha introducido un número de variables binarias igual al número de líquidos iónicos presentes en la mezcla. Cada una de estas variables multiplican a las fracciones molares de sus correspondientes líquidos iónicos, de manera que cuando dicha variable es igual a 1, el líquido se encuentra en la mezcla mientras que cuando dicha variable es igual a 0, el líquido iónico no se encuentra presente en dicha mezcla. El empleo de este tipo de variables obliga por tanto a emplear algoritmos para la resolución de problemas de optimización MINLP ya que si todas las variables fueran continuas, bastaría con el empleo de algoritmos para la resolución de problemas de optimización NLP (Non-Linear Programming). Se han probado por tanto diversos algoritmos presentes en el paquete OPTI Toolbox de MATLAB para comprobar cuál es el más adecuado para abordar este problema. Finalmente, una vez validado el código programado, se han optimizado diversas mezclas de líquidos iónicos para lograr la máxima recuperación de compuestos aromáticos en un proceso de absorción de mezclas orgánicas. También se ha usado este código para la minimización del coste correspondiente a la compra de los líquidos iónicos de la mezcla de disolventes empleada en la operación de absorción. En este caso ha sido necesaria la introducción de restricciones relativas a la recuperación de aromáticos en la fase líquida o a la pureza de la mezcla obtenida una vez separada la mezcla de líquidos iónicos. Se han modelizado los dos problemas descritos previamente (maximización de la recuperación de Benceno y minimización del coste de operación) empleando tanto únicamente variables continuas (correspondientes a las fracciones o cantidades molares de los líquidos iónicos) como variables continuas y binarias (correspondientes a cada uno de los líquidos iónicos implicados en las mezclas).
Resumo:
Multiobjective Generalized Disjunctive Programming (MO-GDP) optimization has been used for the synthesis of an important industrial process, isobutane alkylation. The two objective functions to be simultaneously optimized are the environmental impact, determined by means of LCA (Life Cycle Assessment), and the economic potential of the process. The main reason for including the minimization of the environmental impact in the optimization process is the widespread environmental concern by the general public. For the resolution of the problem we employed a hybrid simulation- optimization methodology, i.e., the superstructure of the process was developed directly in a chemical process simulator connected to a state of the art optimizer. The model was formulated as a GDP and solved using a logic algorithm that avoids the reformulation as MINLP -Mixed Integer Non Linear Programming-. Our research gave us Pareto curves compounded by three different configurations where the LCA has been assessed by two different parameters: global warming potential and ecoindicator-99.
Resumo:
This paper re-assesses three independently developed approaches that are aimed at solving the problem of zero-weights or non-zero slacks in Data Envelopment Analysis (DEA). The methods are weights restricted, non-radial and extended facet DEA models. Weights restricted DEA models are dual to envelopment DEA models with restrictions on the dual variables (DEA weights) aimed at avoiding zero values for those weights; non-radial DEA models are envelopment models which avoid non-zero slacks in the input-output constraints. Finally, extended facet DEA models recognize that only projections on facets of full dimension correspond to well defined rates of substitution/transformation between all inputs/outputs which in turn correspond to non-zero weights in the multiplier version of the DEA model. We demonstrate how these methods are equivalent, not only in their aim but also in the solutions they yield. In addition, we show that the aforementioned methods modify the production frontier by extending existing facets or creating unobserved facets. Further we propose a new approach that uses weight restrictions to extend existing facets. This approach has some advantages in computational terms, because extended facet models normally make use of mixed integer programming models, which are computationally demanding.
Resumo:
Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.
Resumo:
Cooperative communication has gained much interest due to its ability to exploit the broadcasting nature of the wireless medium to mitigate multipath fading. There has been considerable amount of research on how cooperative transmission can improve the performance of the network by focusing on the physical layer issues. During the past few years, the researchers have started to take into consideration cooperative transmission in routing and there has been a growing interest in designing and evaluating cooperative routing protocols. Most of the existing cooperative routing algorithms are designed to reduce the energy consumption; however, packet collision minimization using cooperative routing has not been addressed yet. This dissertation presents an optimization framework to minimize collision probability using cooperative routing in wireless sensor networks. More specifically, we develop a mathematical model and formulate the problem as a large-scale Mixed Integer Non-Linear Programming problem. We also propose a solution based on the branch and bound algorithm augmented with reducing the search space (branch and bound space reduction). The proposed strategy builds up the optimal routes from each source to the sink node by providing the best set of hops in each route, the best set of relays, and the optimal power allocation for the cooperative transmission links. To reduce the computational complexity, we propose two near optimal cooperative routing algorithms. In the first near optimal algorithm, we solve the problem by decoupling the optimal power allocation scheme from optimal route selection. Therefore, the problem is formulated by an Integer Non-Linear Programming, which is solved using a branch and bound space reduced method. In the second near optimal algorithm, the cooperative routing problem is solved by decoupling the transmission power and the relay node se- lection from the route selection. After solving the routing problems, the power allocation is applied in the selected route. Simulation results show the algorithms can significantly reduce the collision probability compared with existing cooperative routing schemes.
Resumo:
Acknowledgement The first author would like to acknowledge the University of Aberdeen and the Henderson Economics Research Fund for funding his PhD studies in the period 2011-2014 which formed the basis for the research presented in this paper. The first author would also like to acknowledge the Macaulay Development Trust which funds his postdoctoral fellowship with The James Hutton Institute, Aberdeen, Scotland. The authors thank two anonymous referees for valuable comments and suggestions on earlier versions of this paper. All usual caveats apply
Resumo:
I explore and analyze a problem of finding the socially optimal capital requirements for financial institutions considering two distinct channels of contagion: direct exposures among the institutions, as represented by a network and fire sales externalities, which reflect the negative price impact of massive liquidation of assets.These two channels amplify shocks from individual financial institutions to the financial system as a whole and thus increase the risk of joint defaults amongst the interconnected financial institutions; this is often referred to as systemic risk. In the model, there is a trade-off between reducing systemic risk and raising the capital requirements of the financial institutions. The policymaker considers this trade-off and determines the optimal capital requirements for individual financial institutions. I provide a method for finding and analyzing the optimal capital requirements that can be applied to arbitrary network structures and arbitrary distributions of investment returns.
In particular, I first consider a network model consisting only of direct exposures and show that the optimal capital requirements can be found by solving a stochastic linear programming problem. I then extend the analysis to financial networks with default costs and show the optimal capital requirements can be found by solving a stochastic mixed integer programming problem. The computational complexity of this problem poses a challenge, and I develop an iterative algorithm that can be efficiently executed. I show that the iterative algorithm leads to solutions that are nearly optimal by comparing it with lower bounds based on a dual approach. I also show that the iterative algorithm converges to the optimal solution.
Finally, I incorporate fire sales externalities into the model. In particular, I am able to extend the analysis of systemic risk and the optimal capital requirements with a single illiquid asset to a model with multiple illiquid assets. The model with multiple illiquid assets incorporates liquidation rules used by the banks. I provide an optimization formulation whose solution provides the equilibrium payments for a given liquidation rule.
I further show that the socially optimal capital problem using the ``socially optimal liquidation" and prioritized liquidation rules can be formulated as a convex and convex mixed integer problem, respectively. Finally, I illustrate the results of the methodology on numerical examples and
discuss some implications for capital regulation policy and stress testing.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
A scenario-based two-stage stochastic programming model for gas production network planning under uncertainty is usually a large-scale nonconvex mixed-integer nonlinear programme (MINLP), which can be efficiently solved to global optimality with nonconvex generalized Benders decomposition (NGBD). This paper is concerned with the parallelization of NGBD to exploit multiple available computing resources. Three parallelization strategies are proposed, namely, naive scenario parallelization, adaptive scenario parallelization, and adaptive scenario and bounding parallelization. Case study of two industrial natural gas production network planning problems shows that, while the NGBD without parallelization is already faster than a state-of-the-art global optimization solver by an order of magnitude, the parallelization can improve the efficiency by several times on computers with multicore processors. The adaptive scenario and bounding parallelization achieves the best overall performance among the three proposed parallelization strategies.
Resumo:
The study aims to provide information on efficiency opportunities on SCA's northbound cassettes. It has been made by examining the capacity utilization rate on the northbound cassettes on SCA's vessels for a period of two weeks. The cargo loaded in the ports of Rotterdam and Sheerness consists of external cargo of varying shape. The cargo is shipped northbound to Holmsund and Sundsvall. Measurements have been made on the cargo to the final destinations Sundsvall, Holmsund and Finland. The measurements have been used in a mathematical optimization model created to optimize the loading of the cassettes. The model is based on placing boxes in a grid where the boxes that are placed representing the cargo and the grids representing the cassettes. The aim of the model is to reduce the number of cassettes and thereby increase the capacity utilization rate. The study resulted in an increase in capacity utilization rate for both area and volume to all destinations. The overall improvement for all cassettes examined resulted in an increase in the area capacity utilization rate by 9.02 percentage points and 5.72 percentage points for the volume capacity utilization rate. It also resulted in a decrease of 22 cassettes in total on the four voyages that were examined which indicate that there are opportunities to improve the capacity utilization rate. The study also shows that the model can be used as a basis for similar problems.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
Short sea shipping has several advantages over other means of transportation, recognized by EU members. The maritime transportation could be dealt like a combination of two well-known problems: the container stowage problem and routing planning problem. The integration of these two well-known problems results in a new problem CSSRP (Container stowage and ship routing problem) that is also an hard combinatorial optimization problem. The aim of this work is to solve the CSSRP using a mixed integer programming model. It is proved that regardless the complexity of this problem, optimal solutions could be achieved in a reduced computational time. For testing the mathematical model some problems based on real data were generated and a sensibility analysis was performed.
Resumo:
Worldwide air traffic tends to increase and for many airports it is no longer an op-tion to expand terminals and runways, so airports are trying to maximize their op-erational efficiency. Many airports already operate near their maximal capacity. Peak hours imply operational bottlenecks and cause chained delays across flights impacting passengers, airlines and airports. Therefore there is a need for the opti-mization of the ground movements at the airports. The ground movement prob-lem consists of routing the departing planes from the gate to the runway for take-off, and the arriving planes from the runway to the gate, and to schedule their movements. The main goal is to minimize the time spent by the planes during their ground movements while respecting all the rules established by the Ad-vanced Surface Movement, Guidance and Control Systems of the International Civil Aviation. Each aircraft event (arrival or departing authorization) generates a new environment and therefore a new instance of the Ground Movement Prob-lem. The optimization approach proposed is based on an Iterated Local Search and provides a fast heuristic solution for each real-time event generated instance granting all safety regulations. Preliminary computational results are reported for real data comparing the heuristic solutions with the solutions obtained using a mixed-integer programming approach.