987 resultados para Inbred BALB C
Resumo:
We reported previously that infection of C3H/HeOuJ (HeOu) mice with the murine intestinal pathogen Citrobacter rodentium caused a selective modulation of hepatic cytochrome P450 (P450) gene expression in the liver that was independent of the Toll-like receptor 4. However, HeOu mice are much more sensitive to the pathogenic effects of C. rodentium infection, and the P450 down-regulation was associated with significant morbidity in the animals. Here, we report that oral infection of C57BL/6 mice with C. rodentium, which produced only mild clinical signs and symptoms, produced very similar effects on hepatic P450 expression in this strain. As in HeOu mice, CYP4A mRNAs and proteins were among the most sensitive to down-regulation, whereas CYP4F18 was induced. CYP2D9 mRNA was also induced 8- to 9-fold in the C57BL/6 mice. The time course of P450 regulation followed that of colonic inflammation and bacterial colonization, peaking at 7 to 10 days after infection and returning to normal at 15 to 24 days as the infection resolved. These changes also correlated with the time course of significant elevations in the serum of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha, as well as of interferon-gamma and IL-2, with serum levels of IL-6 being markedly higher than those of the other cytokines. Intraperitoneal administration of C. rodentium produced a rapid down-regulation of P450 enzymes that was quantitatively and qualitatively different from that of oral infection, although CYP2D9 was induced in both models, suggesting that the effects of oral infection on the liver are not due to bacterial translocation.
Resumo:
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.
Resumo:
The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.
Resumo:
Foxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3(+)CD25(+)CD4(+) T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4(high)CD62L(low)CD44(high)CD54(high)CD69(+)) that distinguished them from naive regulatory T cells (CCR4(int)CD62L(high)CD44(int)CD54(int)CD69(-)). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.
Resumo:
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver.
Resumo:
BACKGROUND: Schistosomiasis remains a major public health issue, with an estimated 230 million people infected worldwide. Novel tools for early diagnosis and surveillance of schistosomiasis are currently needed. Elevated levels of circulating microRNAs (miRNAs) are commonly associated with the initiation and progression of human disease pathology. Hence, serum miRNAs are emerging as promising biomarkers for the diagnosis of a variety of human diseases. This study investigated circulating host miRNAs commonly associated with liver diseases and schistosome parasite-derived miRNAs during the progression of hepatic schistosomiasis japonica in two murine models.
METHODOLOGY/PRINCIPAL FINDINGS: Two mouse strains (C57BL/6 and BALB/c) were infected with a low dosage of Schistosoma japonicum cercariae. The dynamic patterns of hepatopathology, the serum levels of liver injury-related enzymes and the serum circulating miRNAs (both host and parasite-derived) levels were then assessed in the progression of schistosomiasis japonica. For the first time, an inverse correlation between the severity of hepatocyte necrosis and the level of liver fibrosis was revealed during S. japonicum infection in BALB/c, but not in C57BL/6 mice. The inconsistent levels of the host circulating miRNAs, miR-122, miR-21 and miR-34a in serum were confirmed in the two murine models during infection, which limits their potential value as individual diagnostic biomarkers for schistosomiasis. However, their serum levels in combination may serve as a novel biomarker to mirror the hepatic immune responses induced in the mammalian host during schistosome infection and the degree of hepatopathology. Further, two circulating parasite-specific miRNAs, sja-miR-277 and sja-miR-3479-3p, were shown to have potential as diagnostic markers for schistosomiasis japonica.
CONCLUSIONS/SIGNIFICANCE: We provide the first evidence for the potential of utilizing circulating host miRNAs to indicate different immune responses and the severity of hepatopathology outcomes induced in two murine strains infected with S. japonicum. This study also establishes a basis for the early and cell-free diagnosis of schistosomiasis by targeting circulating schistosome parasite-derived miRNAs.
Resumo:
To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines.
Resumo:
Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-gamma and MyD88 molecules with a partial contribution of TNF-alpha and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice.
Resumo:
Worm burdens recovered from inbred mice strains, namely C57Bl/6, C57Bl/10, CBA, BALB/c, DBA/2 and C3H/He, conventionally maintained in two institutional animal houses in the State of Rio de Janeiro, RJ, Brazil, were analyzed and compared, regarding their prevalences and mean intensities.Three parasite species were observed: the nematodes Aspiculuris tetraptera, Syphacia obvelata and the cestode Vampirolepis nana. A modification of the anal swab technique is also proposed for the first time as an auxiliary tool for the detection of oxyurid eggs in mice
Resumo:
This project attempts to identify anatomic features that predict the range of the ‘normal’ endocochlear potential in young inbred mice. Cochlear lateral wall histologic metrics were compared in recombinant inbred (RI) mouse strains formed from BALB/c and C57BL/6 mice.
Resumo:
Foi investigada a susceptibilidade de sete linhagens isogênicas de camundongos à infecção experimental, primária e secundária, por Strongyloides venezuelensis a fim de servir de base para estudos genéticos sobre a resistência. Foram utilizados 12 camundongos machos, com seis semanas de idade, das seguintes linhagens isogênicas: A/J, BALB/c, CBA/J, C3H/Hepos, C57BL/6, DBA/2 e NIH. Os animais foram inoculados, via sub-cutânea, com 2000 larvas infectantes. As contagens médias (± desvio padrão) de parasitas no intestino delgado dos camundongos seis dias após a infecção, em ordem crescente, foram: 28 (± 19) na linhagem NIH; 647 (± 228) na BALB/c; 709 (± 425) na DBA/2; 731 (± 151) na C3H/Hepos, 801 (± 174) na CBA/J; 1024 (± 267) na C57BL/6 e 1313 (± 483) na A/J. Os camundongos C57BL/6 apresentaram as mais elevadas contagens de ovos de S. venezuelensis por grama de fezes (OPG) e os NIH, as mais baixas. Não foram detectados ovos nos exames de fezes e não foram encontrados parasitas no intestino delgado dos animais re-infectados 14 dias após a infecção primária. A linhagem NIH apresentou elevada resistência contra as infecções primárias por S. venezuelensis. Entre as outras seis linhagens, uma das mais susceptíveis foi a linhagem C57BL/6.
Resumo:
BACKGROUND: Noninvasive intraocular pressure (IOP) measurement in mice is critically important for understanding the pathophysiology of glaucoma. Rebound tonometry is one of the methods that can be used for obtaining such measurements. We evaluated the ability of the rebound tonometer (RT) to determine IOP differences among various mouse strains and whether differences in corneal thickness may affect IOP measurements in these animals. MATERIALS AND METHODS: Five different commonly used mouse strains (BALB/C, CBA/CAHN, AKR/J, CBA/J, and 129P3/J) were used. IOP was measured in eyes from 12 nonsedated animals (6 male and 6 female) from each strain at 2 to 3 months of age using the RT. IOPs were measured in all animals, on 2 different days between 10 AM and 12 PM. Subsequently, a number of eyes from each strain were cannulated to provide a calibration curve specific for that strain. Tonometer readings for all strains were converted to apparent IOP values using the calibration data obtained from the calibration curve of the respective strain. For comparison purposes, IOP values were also obtained using the C57BL/6 calibration data previously reported. IOP for the 5 strains, male and female animals, and the different occasion of measurement were compared using repeat measures analysis of variance. The central corneal thickness (CCT) of another group of 8 male animals from each of the 5 strains was also measured using an optical low coherence reflectometry (OLCR) pachymeter modified for use with mice. CCT values were correlated to mean IOPs of male animals and to the slopes and intercept of individual strain calibration curves. RESULTS: Noninvasive IOP measurements confirm that the BALB/C strain has lower and the CBA/CAHN has higher relative IOPs than other mouse strains while the AKR/J, the CBA/J, and the 129P3/J strains have intermediate IOPs. There is a very good correlation of apparent IOP values obtained by RT with previously reported true IOPs obtained by cannulation. There was a small but statistically significant difference in IOP between male and female animals in 2 strains (129P3/J and AKR/J) with female mice having higher relative IOPs. No correlation between CCT and IOP was detected. CCT did not correlate with any of the constants describing the calibration curves in the various strains. CONCLUSIONS: Noninvasive IOP measurement in mice using the RT can be used to help elucidate IOP phenotype, after prior calibration of the tonometer. CCT has no effect on mouse IOP measurements using the RT.
Resumo:
The impact of genetic factors on asthma is well recognized but poorly understood. We tested the hypothesis that different mouse strains present different lung tissue strip mechanics in a model of chronic allergic asthma and that these mechanical differences may be potentially related to changes of extracellular matrix composition and/or contractile elements in lung parenchyma. Oscillatory mechanics were analysed before and after acetylcholine (ACh) in C57BL/10, BALB/c, and A/J mice, subjected or not to ovalbumin sensitization and challenge. In controls, tissue elastance (E) and resistance (R), collagen and elastic fibres` content, and alpha-actin were higher in A/J compared to BALB/c mice, which, in turn, were more elevated than in C57BL/10. A similar response pattern was observed in ovalbumin-challenged animals irrespective of mouse strain. E and R augmented more in ovalbumin-challenged A/J [E: 22%, R: 18%] than C57BL/10 mice [E: 9.4%, R: 11 %] after ACh In conclusion, lung parenchyma remodelled differently yielding distinct in vitro mechanics according to mouse strain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Animals sensitized to allergens change their feeding behavior and avoid drinking the otherwise preferred sweetened solutions containing the allergens. This phenomenon, known as food aversion, appears to be mediated by allergen-specific IgE antibodies. Here we investigated food aversion in BALB/c and C57BL/6 mice, which differ in their allergic responses to the allergen ovalbumin as well as in their preference for sweet taste. BALB/c mice present higher levels of IgE and a natural lower preference for sweet flavors when compared to C57BL/6 mice. Specifically, we studied a conflicting situation in which animals simultaneously experienced the aversive contact with the allergen and the attractive sweet taste of increasing concentrations of sucrose. We found that BALB/c mice were more prone to develop food aversion than C57BL/6 mice and that this aversive behavior could be abolished in both strains by increasing the palatability of the solution containing the allergen. In both strains food aversion was positively correlated with the levels of allergen-specific IgE antibodies and inversely correlated with their preference for sucrose sweetened solutions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Formalin-killed promastigotes (FKP) of Leishmania major, in combination with Montanide ISA 720 (MISA), BCG or alum were used in vaccination of an inbred murine model against cutaneous leishmaniasis (CL). Significant and specific increases in anti-FKP IgG responses were detected for both alum-FKP and BCG-FKP compared to MISA-FKP (p < 0.001). Significant increases in splenic lymphocyte recall proliferation was obtained in the MISA-FKP vaccinated mice compared to alum-FKP or BCG-FKP vaccinated groups (p < 0.01). The highest interferon-γ responses were observed in the BCG-FKP group followed by the MISA-FKP while the alum-FKP gave the least responses. Significantly reduced lesion sizes were obtained in the MISA-FKP group compared to the BCG/alum adjuvants-FKP vaccinated groups. Although the BCG-FKP group showed the highest IFN-γ responses, it failed to control cutaneous lesions. Significant reductions in parasite numbers were observed in the MISA-FKP and BCG-FKP vaccinated groups (p < 0.001). There was a good correlation between parasite burden and IFN-γ level indicating IFN-γ response as a sensitive parameter of the immune status. In conclusion, MISA-FKP is the most efficacious vaccine formulation against murine cutaneous leishmaniasis.