954 resultados para Impression formation, self-presentation, myocardial infarction, perceptions
Resumo:
AIMS: No-reflow after a primary percutaneous coronary intervention (PCI) is associated with a high incidence of left ventricular (LV) failure and a poor prognosis. Endothelin-1 (ET-1) is a potent endothelium-derived vasoconstrictor peptide and an important modulator of neutrophil function. Elevated systemic ET-1 levels have recently been reported to predict a poor prognosis in patients with acute myocardial infarction (AMI) treated by primary PCI. We aimed to investigate the relationship between systemic ET-1 plasma levels and no-reflow in a group of AMI patients treated by primary PCI. METHODS AND RESULTS: A group of 51 patients (age 59+/-9.9 years, 44 males) with a first AMI, undergoing successful primary or rescue PCI, were included in the study. Angiographic no-reflow was defined as coronary TIMI flow grade < or =2 or TIMI flow 3 with a final myocardial blush grade < or =2. Blood samples were obtained from all patients on admission for ET-1 levels measurement. No reflow was observed in 31 patients (61%). Variables associated with no-reflow at univariate analysis included culprit lesion of the left anterior coronary descending artery (LAD) (67 vs. 29%, P=0.006) and ET-1 plasma levels (3.95+/-0.7 vs. 3.3+/-0.8 pg/mL, P=0.004). At multivariable logistic regression analysis, ET-1 was the only significant predictor of no-reflow (P=0.03) together with LAD as the culprit vessel (P=0.04). CONCLUSION: ET-1 plasma levels predict angiographic no-reflow after successful primary or rescue PCI. These findings suggest that ET-1 antagonists might be beneficial in the management of no-reflow.
Resumo:
We present the case of a patient who presented with acute inferior myocardial infarction and embolic occlusion of the distal left anterior descending and proximal right coronary artery. A large atrial septal defect (ASD) was seen on transesophageal echocardiography and the ASD was closed during the same session as coronary angiography and percutaneous coronary intervention. The presence of embolic or thrombotic occlusions of coronary arteries should prompt interventional cardiologists to look for a patent foramen ovale or ASD and perform percutaneous closure right away.
Resumo:
BACKGROUND: Clinician-rated large-scale studies estimating the prevalence of posttraumatic stress disorder (PTSD) related to myocardial infarction (MI) and identifying predictors of clinical PTSD are currently lacking. HYPOTHESES: We hypothesized that PTSD is prevalent in post-MI patients and that the subjective experience of the MI determines PTSD status. METHODS: We approached 951 post-MI patients with a questionnaire screening for PTSD symptoms related to their MI. Those responding and meeting a cutoff of PTSD symptom levels were invited to participate in a structured clinical interview to diagnose PTSD following Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. Fear of dying, feelings of helplessness, and severity of pain perceived during the MI were also assessed by visual analog scales. RESULTS: The screening questionnaire was completed by 394 patients, whereby 77 met the cutoff for the interview (8 patients declined the interview). Forty of 394 patients (10.2%) had clinical PTSD (subsyndromal and syndromal forms combined). Younger age (OR 0.95, 95% CI 0.91-0.99), greater fear of dying (OR 2.77, 95% CI 1.28-5.97), and more intense feelings of helplessness (OR 2.97, 95% CI 1.42-6.21) were independent predictors of PTSD status. Perceived pain intensity during MI, sex, type of index MI, left ventricular ejection fraction, number of coronary occlusions, and highest level of total creatinine kinase were not significant predictors. CONCLUSIONS: Clinical PTSD is prevalent in post-MI patients. Demographic and particularly psychological variables related to the subjective experience of the event were stronger predictors of PTSD status than were objective measures of MI severity.
Resumo:
The occurrence of sudden cardiac death (SCD) in patients with silent ischemia after myocardial infarction (MI) and the factors facilitating SCD are unknown. This study aimed to determine the factors facilitating SCD in patients with silent ischemia after MI. In the Swiss Interventional Study on Silent Ischemia Type II (SWISSI II), 201 patients with silent ischemia after MI were randomized to percutaneous coronary intervention (PCI) or medical management. The main end point of the present analysis was SCD. Multivariable regression models were used to detect potential associations between baseline or follow-up variables and SCD. During a mean follow-up of 10.3 +/- 2.6 years, 12 SCDs occurred, corresponding to an average annual event rate of 0.6%. On multivariate regression analysis, the decline in the left ventricular ejection fraction (LVEF) during follow-up was the only independent predictor of SCD (p = 0.011), other than age; however, the baseline LVEF was not. The decline in LVEF was greater in patients receiving medical management than in those who had received PCI (p <0.001), as well as in patients with residual myocardial ischemia or recurrent MI compared with patients without these findings (p = 0.038 and p <0.001, respectively). Compared with medical management, PCI reduced the rate of residual myocardial ischemia (p <0.001) and recurrent MI (p = 0.001) during follow-up. In conclusion, patients with silent ischemia after MI are at a substantial risk of SCD. The prevention of residual myocardial ischemia and recurrent MI using PCI resulted in better long-term LVEF and a reduced SCD incidence.
Resumo:
High sympathetic tone creates a significant risk for ventricular arrhythmias and sudden death, which can especially affect patients after a myocardial infarction (MI) when exercising in a hypoxic environment.
Resumo:
OBJECTIVES This study sought to study the efficacy and safety of newer-generation drug-eluting stents (DES) compared with bare-metal stents (BMS) in an appropriately powered population of patients with ST-segment elevation myocardial infarction (STEMI). BACKGROUND Among patients with STEMI, early generation DES improved efficacy but not safety compared with BMS. Newer-generation DES, everolimus-eluting stents, and biolimus A9-eluting stents, have been shown to improve clinical outcomes compared with early generation DES. METHODS Individual patient data for 2,665 STEMI patients enrolled in 2 large-scale randomized clinical trials comparing newer-generation DES with BMS were pooled: 1,326 patients received a newer-generation DES (everolimus-eluting stent or biolimus A9-eluting stent), whereas the remaining 1,329 patients received a BMS. Random-effects models were used to assess differences between the 2 groups for the device-oriented composite endpoint of cardiac death, target-vessel reinfarction, and target-lesion revascularization and the patient-oriented composite endpoint of all-cause death, any infarction, and any revascularization at 1 year. RESULTS Newer-generation DES substantially reduce the risk of the device-oriented composite endpoint compared with BMS at 1 year (relative risk [RR]: 0.58; 95% confidence interval [CI]: 0.43 to 0.79; p = 0.0004). Similarly, the risk of the patient-oriented composite endpoint was lower with newer-generation DES than BMS (RR: 0.78; 95% CI: 0.63 to 0.96; p = 0.02). Differences in favor of newer-generation DES were driven by both a lower risk of repeat revascularization of the target lesion (RR: 0.33; 95% CI: 0.20 to 0.52; p < 0.0001) and a lower risk of target-vessel infarction (RR: 0.36; 95% CI: 0.14 to 0.92; p = 0.03). Newer-generation DES also reduced the risk of definite stent thrombosis (RR: 0.35; 95% CI: 0.16 to 0.75; p = 0.006) compared with BMS. CONCLUSIONS Among patients with STEMI, newer-generation DES improve safety and efficacy compared with BMS throughout 1 year. It remains to be determined whether the differences in favor of newer-generation DES are sustained during long-term follow-up.
Resumo:
Aims: We examined what type of STEMI patients are more likely to undergo multivessel PCI (MPCI) in a "real-world" setting and whether MPCI leads to worse or better outcomes compared with single-vessel PCI (SPCI) after stratifying patients by risk. Methods and results: Among STEMI patients enrolled in the Swiss AMIS Plus registry between 2005 and 2012 (n=12,000), 4,941 were identified with multivessel disease. We then stratified patients based on MPCI use and their risk. High-risk patients were identified a priori as those with: 1) left main (LM) involvement (lesions, n=263); 2) out-of-hospital cardiac arrest; or 3) Killip class III/IV. Logistic regression models examined for predictors of MPCI use and the association between MPCI and in-hospital mortality. Three thousand eight hundred and thirty-three (77.6%) patients underwent SPCI and 1,108 (22.4%) underwent MPCI. Rates of MPCI were greater among high-risk patients for each of the three categories: 8.6% vs. 5.9% for out-of-hospital cardiac arrest (p<0.01); 12.3% vs. 6.2% for Killip III/IV (p<0.001); and 14.5% vs. 2.7% for LM involvement (p<0.001). Overall, in-hospital mortality after MPCI was higher when compared with SPCI (7.3% vs. 4.4%; p<0.001). However, this result was not present when patients were stratified by risk: in-hospital mortality for MPCI vs. SPCI was 2.0% vs. 2.0% (p=1.00) in low-risk patients and 22.2% vs. 21.7% (p=1.00) in high-risk patients. Conclusions: High-risk patients are more likely to undergo MPCI. Furthermore, MPCI does not appear to be associated with higher mortality after stratifying patients based on their risk.
Resumo:
BACKGROUND Data on temporal trends in outcomes, gender differences, and adherence to evidence-based therapy (EBT) of diabetic patients with ST-segment elevation myocardial infarction (STEMI) are sparse. METHODS We performed a retrospective analysis of prospectively acquired data on 3565 diabetic (2412 males and 1153 females) STEMI patients enrolled in the Swiss AMIS Plus registry between 1997 and 2010 and compared in-hospital outcomes and adherence to EBT with the nondiabetic population (n=15,531). RESULTS In-hospital mortality dramatically decreased in diabetic patients, from 19.9% in 1997 to 9.0% in 2010 (p trend<0.001) with an age-adjusted decrease of 6% per year of admission. Similar trends were observed for age-adjusted reinfarction (OR 0.86, p<0.001), cardiogenic shock (OR 0.88, p<0.001), as well as death, reinfarction, or stroke (OR 0.92, p<0.001). However, the mortality benefit over time was observed in diabetic males (p trend=0.006) but not females (p trend=0.082). In addition, mortality remained twice as high in diabetic patients compared with nondiabetic ones (12.1 vs. 6.1%, p<0.001) and diabetes was identified as independent predictor of mortality (OR 1.23, p=0.022). Within the diabetic cohort, females had higher mortality than males (16.1 vs. 10.2%, p<0.001) and female gender independently predicted in-hospital mortality (OR 1.45, p=0.015). Adherence to EBT significantly improved over time in diabetic patients (p trend<0.001) but remained inferior - especially in women - to the one of nondiabetic individuals. CONCLUSIONS In-hospital mortality and morbidity of diabetic STEMI patients in Switzerland improved dramatically over time but, compared with nondiabetic counterparts, gaps in outcomes as well as EBT use persisted, especially in women.
Resumo:
Over the past five decades, management of acute ST-segment elevation myocardial infarction (STEMI) has evolved substantially. Current treatment encompasses a systematic chain of network activation, antithrombotic drugs, and rapid instigation of mechanical reperfusion, although pharmacoinvasive strategies remain relevant. Secondary prevention with drugs and lifestyle modifications completes the contemporary management package. Despite a tangible improvement in outcomes, STEMI remains a frequent cause of morbidity and mortality, justifying the quest to find new therapeutic avenues. Ways to reduce delays in doing coronary angioplasty after STEMI onset include early recognition of symptoms by patients and prehospital diagnosis by paramedics so that the emergency room can be bypassed in favour of direct admission to the catheterisation laboratory. Mechanical reperfusion can be optimised by improvements to stent design, whereas visualisation of infarct size has been improved by developments in cardiac MRI. Novel treatments to modulate the inflammatory component of atherosclerosis and the vulnerable plaque include use of bioresorbable vascular scaffolds and anti-proliferative drugs. Translational efforts to improve patients' outcomes after STEMI in relation to cardioprotection, cardiac remodelling, and regeneration are also being realised. This is the third in a Series of three papers about ST-segment elevation myocardial infarction.
Resumo:
In a patient with staphylococcus lugdunensis prosthetic aortic valve endocarditis and coronary septic embolism accompanied by antero-lateral myocardial infarction, embolic material was successfully aspirated from the bifurcation of the left anterior descending coronary artery and the first diagonal branch. A good angiographic result was documented six months thereafter when the patient presented with a second complication, pulsatile compression of the left main coronary artery by an abscess cavity originating between the aortic and mitral annulus, leading to congestive heart failure. The patient underwent successful surgical replacement of the aortic valve prosthesis with concomitant patch reconstruction of the annulus as well as tricuspid annuloplasty.
Resumo:
BACKGROUND Outcome data are limited in patients with ST-segment elevation acute myocardial infarction (STEMI) or other acute coronary syndromes (ACSs) who receive a drug-eluting stent (DES). Data suggest that first generation DES is associated with an increased risk of stent thrombosis when used in STEMI. Whether this observation persists with newer generation DES is unknown. The study objective was to analyze the two-year safety and effectiveness of Resolute™ zotarolimus-eluting stents (R-ZESs) implanted for STEMI, ACS without ST segment elevation (non-STEACS), and stable angina (SA). METHODS Data from the Resolute program (Resolute All Comers and Resolute International) were pooled and patients with R-ZES implantation were categorized by indication: STEMI (n=335), non-STEACS (n=1416), and SA (n=1260). RESULTS Mean age was 59.8±11.3 years (STEMI), 63.8±11.6 (non-STEACS), and 64.9±10.1 (SA). Fewer STEMI patients had diabetes (19.1% vs. 28.5% vs. 29.2%; P<0.001), prior MI (11.3% vs. 27.2% vs. 29.4%; P<0.001), or previous revascularization (11.3% vs. 27.9% vs. 37.6%; P<0.001). Two-year definite/probable stent thrombosis occurred in 2.4% (STEMI), 1.2% (non-STEACS) and 1.1% (SA) of patients with late/very late stent thrombosis (days 31-720) rates of 0.6% (STEMI and non-STEACS) and 0.4% (SA) (P=NS). The two-year mortality rate was 2.1% (STEMI), 4.8% (non-STEACS) and 3.7% (SA) (P=NS). Death or target vessel re-infarction occurred in 3.9% (STEMI), 8.7% (non-STEACS) and 7.3% (SA) (P=0.012). CONCLUSION R-ZES in STEMI and in other clinical presentations is effective and safe. Long term outcomes are favorable with an extremely rare incidence of late and very late stent thrombosis following R-ZES implantation across indications.
Resumo:
BACKGROUND Intracoronary administration of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction. The optimal time point of administration of BM-MNC is still uncertain and has rarely been addressed prospectively in randomized clinical trials. METHODS AND RESULTS In a multicenter study, we randomized 200 patients with large, successfully reperfused ST-segment elevation myocardial infarction in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were administered either early (i.e., 5 to 7 days) or late (i.e., 3 to 4 weeks) after acute myocardial infarction. Cardiac magnetic resonance imaging was performed at baseline and after 4 months. The primary end point was the change from baseline to 4 months in global LV ejection fraction between the 2 treatment groups and the control group. The absolute change in LV ejection fraction from baseline to 4 months was -0.4±8.8% (mean±SD; P=0.74 versus baseline) in the control group, 1.8±8.4% (P=0.12 versus baseline) in the early group, and 0.8±7.6% (P=0.45 versus baseline) in the late group. The treatment effect of BM-MNC as estimated by ANCOVA was 1.25 (95% confidence interval, -1.83 to 4.32; P=0.42) for the early therapy group and 0.55 (95% confidence interval, -2.61 to 3.71; P=0.73) for the late therapy group. CONCLUSIONS Among patients with ST-segment elevation myocardial infarction and LV dysfunction after successful reperfusion, intracoronary infusion of BM-MNC at either 5 to 7 days or 3 to 4 weeks after acute myocardial infarction did not improve LV function at 4-month follow-up.