930 resultados para Ig repertoire


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPAR) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. As ligand-activated receptors, they form a functional transcriptional unit upon heterodimerization with retinoid X receptors (RXRs). PPARs are activated by fatty acids and their derivatives, whereas RXR is activated by 9-cis retinoic acid. This heterodimer binds to peroxisome proliferator response elements (PPRE) residing in target genes and stimulates their expression. Recent reports now indicate that PPARs and RXRs can function independently, in the absence of a hetero-partner, to modulate gene expression. Of importance, these non-canonical mechanisms underscore the impact of both cofactors and DNA on gene expression. Furthermore, these different mechanisms reveal the increasing repertoire of PPAR 'target' genes that now encompasses non-PPREs containing genes. It is also becoming apparent that understanding the regulation of PPAR expression and activity, can itself have a significant influence on how the expression of subgroups of target genes is studied and integrated in current knowledge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NKT cells utilize a restricted alphabeta TCR repertoire that recognizes glycolipids in association with CD1d. The recent development of fluorescent CD1d tetramers loaded with the synthetic glycolipid alpha-galactosyl-ceramide has led to a clearer definition of NKT-cell subsets as well as important insights into their developmental origin. As many as four subsets may exist, differing in NK1.1 expression, TCR repertoire and dependence on CD1d and various glycolipids for development. Two different lineage-commitment models have been proposed, with most evidence favoring a byproduct of conventional-T-cell development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Replacement of the hyperimmune anti-Rhesus (Rh) D immunoglobulin, currently used to prevent haemolytic disease of the newborn, by fully recombinant human anti-RhD antibodies would solve the current logistic problems associated with supply and demand. The combination of phage display repertoire cloning with precise selection procedures enables isolation of specific genes that can then be inserted into mammalian expression systems allowing production of large quantities of recombinant human proteins. With the aim of selecting high-affinity anti-RhD antibodies, two human Fab libraries were constructed from a hyperimmune donor. Use of a new phage panning procedure involving bromelin-treated red blood cells enabled the isolation of two high-affinity Fab-expressing phage clones. LD-6-3 and LD-6-33, specific for RhD. These showed a novel reaction pattern by recognizing the D variants D(III), D(IVa), D(IVb), D(Va), D(VI) types I and II. D(VII), Rh33 and DFR. Full-length immunoglobulin molecules were constructed by cloning the variable regions into expression vectors containing genomic DNA encoding the immunoglobulin constant regions. We describe the first, stable, suspension growth-adapted Chinese hamster ovary (CHO) cell line producing a high affinity recombinant human IgG1 anti-RhD antibody adapted to pilot-scale production. Evaluation of the Fc region of this recombinant antibody by either chemiluminescence or antibody-dependent cell cytotoxicity (ADCC) assays demonstrated macrophage activation and lysis of red blood cells by human lymphocytes. A consistent source of recombinant human anti-RhD immunoglobulin produced by CHO cells is expected to meet the stringent safety and regulatory requirements for prophylactic application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A glucocorticoid-responsive vector is described which allows for the highly inducible expression of complementary DNAs (cDNAs) in stably transfected mammalian cell lines. This vector, pLK-neo, composed of a variant mouse mammary tumor virus long terminal repeat promoter, containing a hormone regulatory element, a Geneticin resistance-encoding gene in a simian virus 40 transcription unit, and a polylinker insertion site for heterologous cDNAs, was used to express the polymeric immunoglobulin (poly-Ig) receptor and the thymocyte marker, Thy-1, in Madin-Darby canine kidney (MDCK) cells and in murine fibroblast L cells. A high level of poly-Ig receptor or Thy-1 mRNA accumulation was observed in MDCK cells in response to dexamethasone with a parallel ten- to 200-fold increase in protein synthesis depending on the recombinant protein and the transfected cell clone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of "vaccines that interrupt malaria transmission" (VIMT), which includes not only "classical" transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During thymus development, the TCR beta locus rearranges before the TCR alpha locus. Pairing of productively rearranged TCR beta-chains with an invariant pT alpha chain leads to the formation of a pre-TCR and subsequent expansion of immature pre-T cells. Essentially nothing is known about the TCR V beta repertoire in pre-T cells before or after the expression of a pre-TCR. Using intracellular staining, we show here that the TCR V beta repertoire is significantly biased at the earliest developmental stage in which VDJ beta rearrangement has occurred. Moreover (and in contrast to the V(H) repertoire in immature B cells), V beta repertoire biases in immature T cells do not reflect proximity of V beta gene segments to the DJ beta cluster, nor do they depend upon preferential V beta pairing with the pT alpha chain. We conclude that V gene repertoires in developing T and B cells are controlled by partially distinct mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a subset of mature alpha beta TCR(+) cells that co-express NK lineage markers. Whereas most NKT cells express a canonical Valpha14/Vbeta8.2 TCR and are selected by CD1d, a minority of NKT cells express a diverse TCR repertoire and develop independently of CD1d. Little is known about the selection requirements of CD1d-independent NKT cells. We show here that NKT cells develop in RAG-deficient mice expressing an MHC class II-restricted transgenic TCR (Valpha2/Vbeta8.1) but only under conditions that lead to negative selection of conventional T cells. Moreover development of NKT cells in these mice is absolutely dependent upon an intact TCR alpha-chain connecting peptide domain, which is required for positive selection of conventional T cells via recruitment of the ERK signaling pathway. Collectively our data demonstrate that NKT cells can develop as a result of high avidity TCR/MHC class II interactions and suggest that common signaling pathways are involved in the positive selection of CD1d-independent NKT cells and conventional T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunoglobulin (Ig) isotype (IgG, IgG1, IgG2, IgG3, IgG4, IgM, IgD and IgE) levels were investigated, both pre- and post-treatment with praziquantel (PZQ), in 43 adults and children chronically infected with Schistosoma mansoni , by means of a two-site, isotype-specific immunoenzymometric assay. The patients were classified as responders (R) or non-responders (NR) on the basis of their circumoval precipitin test (COPT) results 12 months after treatment. In comparison with controls, pre-treatment R children showed significantly higher levels of IgG, IgG1, IgG4 (p<0.001) and IgE (p<0.01), and diminished IgG2 (p<0.05), while NR children showed significantly elevated levels only of IgE (p<0.05). Twelve months after therapy, R children maintained significantly lower levels of IgG2, but showed significantly decreased levels of IgG, IgG1, IgG4, and IgE, while the Ig isotype profile of NR children was unaltered. Adult R and NR showed similar isotype profiles before chemotherapy, with the exception of significantly elevated IgM levels in R. Twelve months after therapy, R adults showed significantly decreased levels of IgG, IgG1, and IgG4, while NR adults showed only diminshed IgG4 levels. These results reveal different Ig isotype profiles in untreated adults and children chronically infected with S. mansoni. The results further show that the pre-treatment Ig isotype profile may be significantly modified after an effective R to chemotherapy, accounted for by down regulation of the IgG1 isotype in association with negative seroconversion of the COPT in R patients. The COPT reaction has been associated with the highly specific egg glycoprotein antigen w1, which shows a significant reduction in reactivity six months after treatment. IgG1 may thus play a main role in the response against the w1 antigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ewing's sarcoma family tumors (ESFT) are the second most common bone malignancy in children and young adults, characterized by unique chromosomal translocations that in 85% of cases lead to expression of the EWS-FLI-1 fusion protein. EWS-FLI-1 functions as an aberrant transcription factor that can both induce and suppress members of its target gene repertoire. We have recently demonstrated that EWS-FLI-1 can alter microRNA (miRNA) expression and that miRNA145 is a direct EWS-FLI-1 target whose suppression is implicated in ESFT development. Here, we use miRNA arrays to compare the global miRNA expression profile of human mesenchymal stem cells (MSC) and ESFT cell lines, and show that ESFT display a distinct miRNA signature that includes induction of the oncogenic miRNA 17-92 cluster and repression of the tumor suppressor let-7 family. We demonstrate that direct repression of let-7a by EWS-FLI-1 participates in the tumorigenic potential of ESFT cells in vivo. The mechanism whereby let-7a expression regulates ESFT growth is shown to be mediated by its target gene HMGA2, as let-7a overexpression and HMGA2 repression both block ESFT cell tumorigenicity. Consistent with these observations, systemic delivery of synthetic let-7a into ESFT-bearing mice restored its expression in tumor cells, decreased HMGA2 expression levels and resulted in ESFT growth inhibition in vivo. Our observations provide evidence that deregulation of let-7a target gene expression participates in ESFT development and identify let-7a as promising new therapeutic target for one of the most aggressive pediatric malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attempts to inhibit the recognition of soluble antigens by T lymphocytes using antibodies specific for the antigen in question have been uniformally unsuccessful, in contrast to the observed specific inhibition of antibody generation by B cells. One exception is the unique situation whereby anti-hapten antisera inhibit the T-cell proliferative responses observed when hapten-specific T lymphocytes or clones are cultured with hapten-derivatized cells or proteins. The inability to inhibit T-cell functions by antigen-specific antibodies has been interpreted in several ways: (1) T cells possess a different repertoire from B cells; (2) the antibodies tested recognize epitopes present on the native antigen, whereas T cells recognize non-native (processed) structures; (3) the antigenic determinant(s) recognized by T cells on the surface of antigen presenting cells are either not accessible to antibodies, or are present in low amounts. The development of antigen-specific T-cell clones and monoclonal antibodies both specific for the same antigenic determinants now allows this question to be investigated definitively. Here, we report for the first time the specific inhibition of antigen-induced T-cell clone proliferation by a monoclonal antibody directed against the relevant soluble protein antigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of Th1-type cytokines is associated with strong cell-mediated immunity while Th2-type cytokines are typically involved in the generation of humoral immune responses. In mice vaccinated a single time (1X) with attenuated cercariae of Schistosoma mansoni, the immunity induced is highly dependent on CD4+ T cells and IFN-gamma. In contrast, mice vaccinated multiple times (3X) have decreased IFN-gamma expression, develop a more dominant Th2-type cytokine response as well as protective antibodies which can passively transfer immunity to naive recipients. Previously, we demonstrated the ability of IL-12, a potent IFN-gamma-inducing cytokine to enhance (1X) schistosome cell-mediated immunity when administered during the period of immunization. More recently, we asked what effects IL-12 would have on the development humoral-based immunity. While multiply-immunized/saline-treated mice demonstrated a 70-80% reduction in parasite burden, 3X/IL-12-vaccinated animals displayed an even more striking >90% reduction in challenge infection, with many mice in the later group demonstrating complete protection. Analysis of pulmonary cytokine mRNA responses demonstrated that control challenged mice elicited a dominant Th2-type response, 3X/saline-vaccinated produced a mixed Th1/Th2-type cytokine response, while 3X/IL-12-immunized animals displayed a dominant Th1-type response. The IL-12-treated group also showed a marked reduction in total serum IgE and tissue eosinophilia while SWAP-specific IgG2a and IgG2b Abs were elevated. Interestingly, animals vaccinated with IL-12 also showed a highly significant increase in total Ig titers specific for IrV-5, a known protective antigen. More importantly, 3X/IL-12 serum alone, when transferred to naive mice reduced worm burdens by over 60% while 3X/saline serum transferred significantly less protection. Nevertheless, animals vaccinated in the presence of IL-12 also develop macrophages with enhanced nitric oxide dependent killing activity against the parasites. Together, these observations suggest that IL-12, initially described as an adjuvant for cell-mediated immunity, may also be used as an adjuvant for promoting both humoral and cell-mediated protective responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eosinophils are prominent inflammatory cells in asthma and other allergic disorders, as well as in helminthic parasite infections. Recently, eosinophils have been reported to synthesize and store a range of regulatory proteins within their secretory granules (eokines). Eokines comprise a group of cytokines, chemokines, and growth factors which are elaborated by eosinophils. These proteins, and the messages which encode them, appear to be identical to those produced by lymphocytes and other tissues. Interestingly, immunoreactivity to many of these eokines has been found to co-localize to the eosinophil´s secretory granules. In this review, we have discussed the repertoire of 18 eokines so far identified in eosinophils, and focused on four of these, namely, interleukin-2 (IL-2), IL-4, granulocyte/macrophage colony-stimulating factor (GM-CSF), and RANTES. These four eokines co-localize to the crystalloid granules in eosinophils, as shown in studies using subcellular fractionation and immunogold labeling in electron microscopy. During stimulation by physiological triggers, for example, with serum-coated particles, eosinophils release these mediators into the surrounding supernatant. In addition, eokines are likely to be synthesized within eosinophils rather than taken up by endocytosis, as show in detection of mRNA for each of these proteins using in situ hybridization, RT-PCR, and in the case of RANTES, in situ RT-PCR. Eokines synthesis and release from eosinophils challenges the commonly held notion that these cells act downstream of key elements in immune system, and indicate that they may instead belong to the afferent arm of immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosomosis is the most economically important disease constraint to livestock productivity in sub-Saharan Africa and has significant negative impact in other parts of the world. Livestock are an integral component of farming systems and thus contribute significantly to food and economic security in developing countries. Current methods of control for trypanosomosis are inadequate to prevent the enormous socioeconomic losses resulting from this disease. A vaccine has been viewed as the most desirable control option. However, the complexity of the parasite's antigenic repertoire made development of a vaccine based on the variable surface glycoprotein coat unlikely. As a result, research is now focused on identifying invariant trypanosome components as potential targets for interrupting infection or infection-mediated disease. Immunosuppression appears to be a nearly universal feature of infection with African trypanosomes and thus may represent an essential element of the host-parasite relationship, possibly by reducing the host's ability to mount a protective immune response. Antibody, T cell and macrophage/monocyte responses of infected cattle are depressed in both trypanosusceptible and trypanotolerant breeds of cattle. This review describes the specific T cell and monocyte/macrophage functions that are altered in trypanosome-infected cattle and compares these disorders with those that have been described in the murine model of trypanosomosis. The identification of parasite factors that induce immunosuppression and the mechanisms that mediate depressed immune responses might suggest novel disease intervention strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identity of minor lymphocytes stimulating (Mls) antigens, endogenous superantigens that can activate, or induce the deletion of, large portions of the T-cell repertoire, has recently been revealed: they are encoded by mouse mammary tumor viruses (MMTV) that have integrated into the germ line as DNA proviruses. As Hans Acha-Orbea and Ed Palmer point out, Mls-mediated modulation may be only the tip of the retrovirus iceberg; already murine leukemia virus (MuLV), with similar superantigen properties, has been discovered.