951 resultados para IP camera
Resumo:
Below are the results of the survey of the Iberian lynx obtained with camera-trapping between 2000 and 2007 in Sierra Morena. Two very important aspects of camera-trapping concerning its efficiency are also analyzed. The first is the evolution along years according to the camera-trapping type used of two efficiency indicators. The results obtained demonstrate that the most efficient lure is rabbit, though it is the less proven (92 trap-nights), followed by camera-trapping in the most frequent marking places (latrines). And, we propose as a novel the concept of use area as a spatial reference unit for the camera-trapping monitoring of non radio-marked animals is proposed, and its validity discussed.
Resumo:
In Video over IP services, perceived video quality heavily depends on parameters such as video coding and network Quality of Service. This paper proposes a model for the estimation of perceived video quality in video streaming and broadcasting services that combines the aforementioned parameters with other that depend mainly on the information contents of the video sequences. These fitting parameters are derived from the Spatial and Temporal Information contents of the sequences. This model does not require reference to the original video sequence so it can be used for online, real-time monitoring of perceived video quality in Video over IP services. Furthermore, this paper proposes a measurement workbench designed to acquire both training data for model fitting and test data for model validation. Preliminary results show good correlation between measured and predicted values.
Resumo:
En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
Resumo:
The main purpose of robot calibration is the correction of the possible errors in the robot parameters. This paper presents a method for a kinematic calibration of a parallel robot that is equipped with one camera in hand. In order to preserve the mechanical configuration of the robot, the camera is utilized to acquire incremental positions of the end effector from a spherical object that is fixed in the word reference frame. The positions of the end effector are related to incremental positions of resolvers of the motors of the robot, and a kinematic model of the robot is used to find a new group of parameters which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and improving spatial measurements. Finally, the robotic system is designed to carry out tracking tasks and the calibration of the robot is validated by means of integrating the errors of the visual controller.
Resumo:
En el presente trabajo se presenta el diseño e implementación de un conjunto de habilitadores o servicios genéricos para aplicaciones de teleconsulta sobre redes IMS. A partir de las funcionalidades identificadas en las aplicaciones de teleconsulta se han diseñado los habilitadores a desarrollar, que son los siguientes: una sala de espera virtual, una pizarra virtual y una multiconferencia multimedia. Estos servicios utilizan a su vez otros habilitadores genéricos referidos en el estado del arte de la arquitectura IMS. Tales servicios se han integrado en una arquitectura IMS para garantizar su funcionamiento. Para evaluar el funcionamiento de los habilitadores desarrollados se ha definido e implementado el caso de uso de una aplicación de teleconsulta avanzada.
Resumo:
In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead
Resumo:
In this paper we present an adaptive multi-camera system for real time object detection able to efficiently adjust the computational requirements of video processing blocks to the available processing power and the activity of the scene. The system is based on a two level adaptation strategy that works at local and at global level. Object detection is based on a Gaussian mixtures model background subtraction algorithm. Results show that the system can efficiently adapt the algorithm parameters without a significant loss in the detection accuracy.
Resumo:
Huecos para iniciales
Resumo:
IP Multimedia Subsystem (IMS) is considered to provide multimedia services to users through an IP-based control plane. The current IMS service invocation mechanism, however, requires the Serving-Call Session Control Function (S-CSCF) invokes each Application Server (AS) sequentially to perform service subscription pro?le, which results in the heavy load of the S-CSCF and the long session set-up delay. To solve this issue, this paper proposes a linear chained service invocation mechanism to invoke each AS consecutively. By checking all the initial Filter Criteria (iFC) one-time and adding the addresses of all involved ASs to the ?Route? header, this new approach enables multiple services to be invoked as a linear chain during a session. We model the service invocation mechanisms through Jackson networks, which are validated through simulations. The analytic results verify that the linear chained service invocation mechanism can effectively reduce session set-up delay of the service layer and decrease the load level of the S-CSCF
Resumo:
The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential.
Resumo:
En este Proyecto de fin de carrera titulado: LA VÍDEOVIGILANCIA: TECNOLOGÍAS ACTUALES Y ASPECTOS SOCIOPOLÍTICOS, tiene como objetivo hacer un estudio en los sistemas de Vídeovigilancia basado en cámaras-IP, con fines de seguridad, control o supervisión. Nos basaremos en exponer los sistemas Vídeovigilancia basados en cámara-IP actuales de ultima generación, cuya principal virtud de estos sistemas, es la comunicación con otros lugares, o espacios públicos como privados y poder visualizar tanto en vivo como en diferido lo que este pasando en ese lugar y en ese momento o haya pasado a través del protocolo de comunicación-IP. Se explicara desde el más básico al más complejo sistema de videovigilancia-IP, también explicaremos su puesta en practica mediante los múltiples interconexiones que estos conlleven. Llegando a este punto, se nos plantea las siguientes cuestiones que da origen a este PFC. Estos sistemas de Vídeovigilancia-IP, captan las imágenes por medio de las cámaras-IP, proporcionando su facilidad tanto de visionado/grabacion, como de control, ya que no es necesario estar presente e interactuando con otros sistemas digitales de diverso índole actuales, gracias al protocolo-IP. Estos sistemas-IP, tienen su puesta en práctica mediante las instalaciones requeridas ,estas podrán ser sencillas o muy complejas de todos los sistemas-IP. Debido al gran aumento masivo, las tecnologías actuales de diverso índole de cámaras-IP en materia de la vídeovigilancia en lugares públicos, y privados en nuestra sociedad actual, lo hace un medio particularmente invasivo y por ello resulta necesario tanto la concurrencia de condiciones que legitimen los tratamientos de datos de personas identificables, como la definición de los principios y garantías que deban aplicarse ya que estas, repercutirán sobre los derechos de las personas, lo que obligara a fijar ciertas garantías. Se nos plantea los casos en los que la captación y/o tratamiento de imágenes con fines de Vídeovigilancia que pertenezcan a personas identificadas o identificables, ha obligado a España, y según dispuesto por la Directiva 95/46/CE del Parlamento Europeo, a regularizar esta situación mediante la Ley Orgánica de Protección de Datos (LOPD) 15/1999 de 13 de diciembre, bajo los procedimientos del Estado español en materia sociopolítica, y dando vigor a esta ley, mediante la aprobación de la Instrucción 1/2006 de 8 de noviembre de 2006, cuyo máximo organismo es la Agencia española de Protección de Datos (AGPD). Una vez planteada la motivación y justificación del proyecto, se derivan unos objetivos a cumplir con la realización del mismo. Los objetivos del proyecto se pueden diferenciar en dos clases principalmente. Los objetivos principales y objetivos secundarios. Los objetivos principales de este PFC, nacen directamente de las necesidades planteadas originalmente en materia de Vídeovigilancia, tanto tecnológicamente basado en las cámaras-IP en la captación y/o tratamiento de imágenes, así como sociopolíticamente donde trataremos de describirlo mediante las indicaciones y criterios con casos prácticos y de cómo deben de aplicarse según la instrucción 1/2006 mediante la LOPD en materia de Vídeovigilancia, en cuanto a la protección de datos que puedan repercutir sobre el derecho de las personas. Por otra parte los objetivos secundarios, son la extensión del objetivo primario y son de orden cuantificador en este PFC, dando una explicación más exhaustiva del objetivo principal. ABSTRACT In this final year project, entitled: THE VIDEOSURVEILLANCE: CURRENT TECHNOLOGIES AND POLITICALSOCIALS ASPECTS, aims to make a study of video surveillance systems based on IP cameras, for security, control or supervision. We will rely on to expose the camera based video surveillance systems IP-current last generation, whose main virtue of these systems, is communication with other places, or public and private spaces and to view both live and time so this happening in that place and at that time or passed through-IP communication protocol. He explained from the most basic to the most complex-IP video surveillance system, also explain its implementation into practice through multiple interconnections that these entail. Arriving at this point, we face the following issues which gave rise to this PFC. These IP-video surveillance systems, captured images through IP-cameras, providing both ease of viewing / recording, as a control, since it is not necessary to be present and interacting with other digital systems such diverse today, thanks IP-protocol. These systems-IP, have their implementation through the facilities required, these can be simple or very complex all-IP video surveillance systems. Due to the large increase in mass, current technologies of different kinds of IP cameras for video surveillance in public places, and private in our society, it makes a particularly invasive and therefore attendance is necessary both conditions that legitimize data processing of identifiable people, as the definition of the principles and safeguards to be applied as these will impact on the rights of the people, which forced to set certain guarantees. We face those cases in which the uptake and / or image processing video surveillance purposes belonging to identified or identifiable, has forced Spain, and as required by Directive 95/46/EC of the European Parliament, to regularize this situation by the Organic Law on Data Protection (LOPD) 15/1999 of December 13, under the procedures of the Spanish State in sociopolitical, and giving effect to this Act, with the approval of the Instruction 1/2006 of 8 November 2006, the governing body is the Spanish Agency for Data Protection (AGPD). Once raised the motivation and justification for the project, resulting in meeting targets to achieve the same. Project objectives can be differentiated into two main classes, the main objectives and secondary objectives: The main objectives of this PFC, born directly from requirements originally raised for capturing both technologically imaging me and try to describe where sociopolitically, the details and criteria as case studies and should be applied according to the instruction 1 / 2006 by the LOPD on video surveillance system in terms of data protection that could impact on the right people. Moreover the secondary objectives are the extension of the primary and are of a quantifier in this PFC, giving a fuller explanation of the main objective.
Resumo:
Esta tesis estudia la monitorización y gestión de la Calidad de Experiencia (QoE) en los servicios de distribución de vídeo sobre IP. Aborda el problema de cómo prevenir, detectar, medir y reaccionar a las degradaciones de la QoE desde la perspectiva de un proveedor de servicios: la solución debe ser escalable para una red IP extensa que entregue flujos individuales a miles de usuarios simultáneamente. La solución de monitorización propuesta se ha denominado QuEM(Qualitative Experience Monitoring, o Monitorización Cualitativa de la Experiencia). Se basa en la detección de las degradaciones de la calidad de servicio de red (pérdidas de paquetes, disminuciones abruptas del ancho de banda...) e inferir de cada una una descripción cualitativa de su efecto en la Calidad de Experiencia percibida (silencios, defectos en el vídeo...). Este análisis se apoya en la información de transporte y de la capa de abstracción de red de los flujos codificados, y permite caracterizar los defectos más relevantes que se observan en este tipo de servicios: congelaciones, efecto de “cuadros”, silencios, pérdida de calidad del vídeo, retardos e interrupciones en el servicio. Los resultados se han validado mediante pruebas de calidad subjetiva. La metodología usada en esas pruebas se ha desarrollado a su vez para imitar lo más posible las condiciones de visualización de un usuario de este tipo de servicios: los defectos que se evalúan se introducen de forma aleatoria en medio de una secuencia de vídeo continua. Se han propuesto también algunas aplicaciones basadas en la solución de monitorización: un sistema de protección desigual frente a errores que ofrece más protección a las partes del vídeo más sensibles a pérdidas, una solución para minimizar el impacto de la interrupción de la descarga de segmentos de Streaming Adaptativo sobre HTTP, y un sistema de cifrado selectivo que encripta únicamente las partes del vídeo más sensibles. También se ha presentado una solución de cambio rápido de canal, así como el análisis de la aplicabilidad de los resultados anteriores a un escenario de vídeo en 3D. ABSTRACT This thesis proposes a comprehensive approach to the monitoring and management of Quality of Experience (QoE) in multimedia delivery services over IP. It addresses the problem of preventing, detecting, measuring, and reacting to QoE degradations, under the constraints of a service provider: the solution must scale for a wide IP network delivering individual media streams to thousands of users. The solution proposed for the monitoring is called QuEM (Qualitative Experience Monitoring). It is based on the detection of degradations in the network Quality of Service (packet losses, bandwidth drops...) and the mapping of each degradation event to a qualitative description of its effect in the perceived Quality of Experience (audio mutes, video artifacts...). This mapping is based on the analysis of the transport and Network Abstraction Layer information of the coded stream, and allows a good characterization of the most relevant defects that exist in this kind of services: screen freezing, macroblocking, audio mutes, video quality drops, delay issues, and service outages. The results have been validated by subjective quality assessment tests. The methodology used for those test has also been designed to mimic as much as possible the conditions of a real user of those services: the impairments to evaluate are introduced randomly in the middle of a continuous video stream. Based on the monitoring solution, several applications have been proposed as well: an unequal error protection system which provides higher protection to the parts of the stream which are more critical for the QoE, a solution which applies the same principles to minimize the impact of incomplete segment downloads in HTTP Adaptive Streaming, and a selective scrambling algorithm which ciphers only the most sensitive parts of the media stream. A fast channel change application is also presented, as well as a discussion about how to apply the previous results and concepts in a 3D video scenario.
Resumo:
Con este proyecto se pretende crear un procedimiento general para la implantación de aplicaciones de procesado de imágenes en cámaras de video IP y la distribución de dicha información mediante Arquitecturas Orientadas a Servicios (SOA). El objetivo principal es crear una aplicación que se ejecute en una cámara de video IP y realice un procesado básico sobre las imágenes capturadas (detección de colores, formas y patrones) permitiendo distribuir el resultado del procesado mediante las arquitecturas SOA descritas en la especificación DPWS (Device Profile for Web Services). El estudio se va a centrar principalmente en la transformación automática de código de procesado de imágenes escrito en Matlab (archivos .m) a un código C ANSI (archivos .c) que posteriormente se compilará para la arquitectura del procesador de la cámara (arquitectura CRIS, similar a la RISC pero con un conjunto reducido de instrucciones). ABSTRACT. This project aims to create a general procedure for the implementation of image processing applications in IP video cameras and the distribution of such information through Service Oriented Architectures (SOA). The main goal is to create an application that runs on IP video camera and carry out a basic processing on the captured images ( color detection, shapes and patterns) allowing to distribute the result of process by SOA architectures described in the DPWS specification (Device Profile for Web Services). The study will focus primarily on the automated transform of image processing code written in Matlab files (. M) to ANSI C code files (. C) which is then compiled to the processor architecture of the camera (CRIS architecture , similar to the RISC but with a reduced instruction set).
Resumo:
We propose a new Bayesian framework for automatically determining the position (location and orientation) of an uncalibrated camera using the observations of moving objects and a schematic map of the passable areas of the environment. Our approach takes advantage of static and dynamic information on the scene structures through prior probability distributions for object dynamics. The proposed approach restricts plausible positions where the sensor can be located while taking into account the inherent ambiguity of the given setting. The proposed framework samples from the posterior probability distribution for the camera position via data driven MCMC, guided by an initial geometric analysis that restricts the search space. A Kullback-Leibler divergence analysis is then used that yields the final camera position estimate, while explicitly isolating ambiguous settings. The proposed approach is evaluated in synthetic and real environments, showing its satisfactory performance in both ambiguous and unambiguous settings.