988 resultados para INTERFACE MORPHOLOGY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

α-Manganese dioxide is synthesized in a microemulsion medium by a redox reaction between KMnO4 and MnSO4 in presence of sodium dodecyl sulphate as a surface active agent. The morphology of MnO2 resembles nanopetals, which are spread parallel to the field. The material is further characterized by powder X-ray diffraction, energy dispersive analysis of X-ray, and Brunauer–Emmett–Teller surface area. Supercapacitance property of α-MnO2 nanopetals is studied by cyclic voltammetry and galvanostatic charge–discharge cycling. High values of specific capacitance are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To a large extent, lakes can be described with a one-dimensional approach, as their main features can be characterized by the vertical temperature profile of the water. The development of the profiles during the year follows the seasonal climate variations. Depending on conditions, lakes become stratified during the warm summer. After cooling, overturn occurs, water cools and an ice cover forms. Typically, water is inversely stratified under the ice, and another overturn occurs in spring after the ice has melted. Features of this circulation have been used in studies to distinguish between lakes in different areas, as basis for observation systems and even as climate indicators. Numerical models can be used to calculate temperature in the lake, on the basis of the meteorological input at the surface. The simple form is to solve the surface temperature. The depth of the lake affects heat transfer, together with other morphological features, the shape and size of the lake. Also the surrounding landscape affects the formation of the meteorological fields over the lake and the energy input. For small lakes the shading by the shores affects both over the lake and inside the water body bringing limitations for the one-dimensional approach. A two-layer model gives an approximation for the basic stratification in the lake. A turbulence model can simulate vertical temperature profile in a more detailed way. If the shape of the temperature profile is very abrupt, vertical transfer is hindered, having many important consequences for lake biology. One-dimensional modelling approach was successfully studied comparing a one-layer model, a two-layer model and a turbulence model. The turbulence model was applied to lakes with different sizes, shapes and locations. Lake models need data from the lakes for model adjustment. The use of the meteorological input data on different scales was analysed, ranging from momentary turbulent changes over the lake to the use of the synoptical data with three hour intervals. Data over about 100 past years were used on the mesoscale at the range of about 100 km and climate change scenarios for future changes. Increasing air temperature typically increases water temperature in epilimnion and decreases ice cover. Lake ice data were used for modelling different kinds of lakes. They were also analyzed statistically in global context. The results were also compared with results of a hydrological watershed model and data from very small lakes for seasonal development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme UDP-galactose-4-epimerase (GAL10) catalyzes a key step in galactose metabolism converting UDP-galactose to UDPglucose which then can get metabolized through glycolysis and TCA cycle thus allowing the cell to use galactose as a carbon and energy source. As in many fungi, a functional homolog of GAL10 exists in Candida albicans. The domainal organization of the homologs from Saccharomyces cerevisiae and C albicans show high degree of homology having both mutarotase and an epimerase domain. The former is responsible for the conversion of beta-D-galactose to alpha-D-galactose and the hitter for epimerization of UDP-galactose to UDP-glucose. Absence of C albicans GAL10 (CaGAL10) affects cell-wall organization, oxidative stress response, biofilm formation and filamentation. Cagal10 mutant cells tend to flocculate extensively as compared to the wild-type cells. The excessive filamentation in this mutant is reflected in its irregular and wrinkled colony morphology. Cagal10 strain is more susceptible to oxidative stress when tested in presence of H2O2. While the S. cerevsiae GAL10 (ScGAL10), essential for survival in the presence of galactose, has not been reported to have defects in the absence of galactose, the C albicans homolog shows these phenotypes during growth in the absence of galactose. Thus a functional CaGal10 is required not only for galactose metabolism but also for normal hyphal morphogenesis, colony morphology, maintenance of cell-wall integrity and for resistance to oxidative stress even in the absence of galactose. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New metal-organic frameworks (MOFs) [Ni(C12N2H10)(H2O)][C6H3(COO)2(COOH)] (I), [Co2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (II), [Ni2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (III), [Ni(C13N2H14)(H2O)][C6H3(COO)2(COOH)] (IV), [Ni3(H2O)8][C6H3(COO)3] (V) and [Co(C4N2H4)(H2O)][C6H3(COO)3] (VI) {C6H3(COOH)3 = trimesic acid, C12N2H10 = 1,10-phenanthroline, C4N2H12 = piperazine dication, C13N2H14 = 1,3-bis(4-pyridyl)propane and C4N2H4 = pyrazine} have been synthesized by using an interface between two immiscible solvents, water and cyclohexanol. The compounds are constructed from the connectivity between the octahedral M2+ (M = Ni, Co) ions coordinated by oxygen atoms of carboxylate groups and water molecules and/or by nitrogen atoms of the ligand amines and the carboxylate units to form a variety of structures of different dimensionality. Strong hydrogen bonds of the type O-H···O are present in all the compounds, which give rise to supramolecularly organized higher-dimensional structures. In some cases ··· interactions are also observed. Magnetic studies indicate weak ferromagnetic interactions in I, IV and V and weak antiferromagnetic interactions in the other compounds (II, III and VI). All the compounds have been characterized by a variety of techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of an in situ small-angle x-ray scattering (SAXS) study of the aggregation of gold nanoparticles formed by an interfacial reaction at the toluene-water interface. The SAXS data provide a direct evidence for aggregate formation of nanoparticles having 1.3 nm gold core and an organic shell that gives a core-core separation of about 2.5 nm. Furthermore, the nanoparticles do not occupy all the cites of 13-member cluster. This occupancy decreases with reaction time and indicate reorganization of the clusters that generates planner disklike structures. A gradual increase in fractal dimension from 1.82 to 2.05 also indicate compactification of cluster aggregation with reaction time, the final exponent being close to 2 expected for disklike aggregates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymidylate synthase (TS), a dimeric enzyme, forms large soluble aggregates at concentrations of urea (3.3-5 M), well below that required for complete denaturation, as established by fluorescence and size-exclusion chromatography. In contrast to the wild-type enzyme, an engineered mutant of TS (T155C/E188C/C244T), TSMox, in which two subunits are crosslinked by disulfide bridges between residues 155-188' and 188-155', does not show this behavior. Aggregation behavior is restored upon disulfide bond reduction in the mutant protein, indicating the involvement of interface segments in forming soluble associated species. Intermolecular disulfide crosslinking has been used as a probe to investigate the formation of larger non-native aggregates. The studies argue for the formation of large multimeric species via a sticky patch of polypeptide from the dimer interface region that becomes exposed on partial unfolding. Covalent reinforcement of relatively fragile protein-protein interfaces may be a useful strategy in minimizing aggregation of non-native structures in multimeric proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the depinning of Fermi level on both p- and n-type germanium after sulfur passivation by aqueous (NH4)(2)S treatment. Schottky contacts realized using metals with a wide range of work functions produce nearly ideal behavior confirming that the Fermi level is depinned. Examination of the passivated surface using x-ray photoelectron spectroscopy reveals bonding between Ge and sulfur.It is shown that good Ohmic contacts to n-type Ge and a hole barrier height (phi(Bp)) of 0.6 eV to p-type Ge can be achieved after this passivation treatment, with Zr Schottky contacts. This is the highest phi(Bp) reported so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of a two-layer circular cylindrical shell subjected to radial ring loading has been solved theoretically. The solution is developed by uniting the elasticity solution through Love function approach for the inner thick shell with the Flügge shell theory for the thin outer shell. Numerical work has been done with a digital computer for different values of shell geometry parameters and material constants. The general behaviour of the composite shell has been studied in the light of these numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new model of ignition in an ignitron, based on the electrical breakdown of the junction between the ignitor (semiconductor) and the mercury (metal) is proposed. A method of evaluating some of the ignition characteristics is also developed. The paper gives a critical summary of the various characteristics of the ignition process. The new model is stated and used to explain all the ignition characteristics. The experiments conducted in support of the various aspects of this model are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the world’s languages lack electronic word form dictionaries. The linguists who gather such dictionaries could be helped with an efficient morphology workbench that adapts to different environments and uses. A widely usable workbench could be characterized, ideally, as generally applicable, extensible, and freely available (GEA). It seems that such a solution could be implemented in the framework of finite-state methods. The current work defines the GEA desiderata and starts a series of articles concerning these desiderata in finite- state morphology. Subsequent parts will review the state of the art and present an action plan toward creating a widely usable finite-state morphology workbench.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation behavior of banana fiber and polypropylene/banana fiber composites has been studied by thermogravimetric analysis. Banana fiber was found to be decomposing in two stages, first one around 320 degrees C and the second one around 450 degrees C. For chemically treated banana fiber, the decomposition process has been at a higher temperature, indicating thermal stability for the treated fiber. Activation energies for thermal degradation were estimated using Coats and Redfern method. Calorific value of the banana fiber was measured using a constant volume isothermal bomb calorimeter. rystallization studies exhibited an increase in the crystallization temperature and crystallinity of polypropylene upon the addition of banana fiber. POLYM. COMPOS., 31:1113-1123, 2010. (C) 2009 Society of Plastics Engineers.