876 resultados para INELASTIC PROCESSES
Resumo:
First-passage time statistics for non-Markovian processes have heretofore only been developed for processes driven by dichotomous fluctuations that are themselves Markov. Herein we develop a new method applicable to Markov and non-Markovian dichotomous fluctuations and calculate analytic mean first-passage times for particular examples.
Resumo:
We develop a method to obtain first-passage-time statistics for non-Markovian processes driven by dichotomous fluctuations. The fluctuations themselves need not be Markovian. We calculate analytic first-passage-time distributions and mean first-passage times for exponential, rectangular, and long-tail temporal distributions of the fluctuations.
Resumo:
Our previously developed stochastic trajectory analysis technique has been applied to the calculation of first-passage time statistics of bound processes. Explicit results are obtained for linearly bound processes driven by dichotomous fluctuations having exponential and rectangular temporal distributions.
Resumo:
The stochastic-trajectory-analysis technique is applied to the calculation of the mean¿first-passage-time statistics for processes driven by external shot noise. Explicit analytical expressions are obtained for free and bound processes.
Resumo:
A new method for the calculation of first-passage times for non-Markovian processes is presented. In addition to the general formalism, some familiar examples are worked out in detail.
Resumo:
We present a new model of sequential adsorption in which the adsorbing particles experience dipolar interactions. We show that in the presence of these long-range interactions, highly ordered structures in the adsorbed layer may be induced at low temperatures. The new phenomenology is manifest through significant variations of the pair correlation function and the jamming limit, with respect to the case of noninteracting particles. Our study could be relevant in understanding the adsorption of magnetic colloidal particles in the presence of a magnetic field.
Resumo:
Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Resumo:
We calculate noninteger moments ¿tq¿ of first passage time to trapping, at both ends of an interval (0,L), for some diffusion and dichotomous processes. We find the critical behavior of ¿tq¿, as a function of q, for free processes. We also show that the addition of a potential can destroy criticality.
Resumo:
The exact analytical expression for the Hausdorff dimension of free processes driven by Gaussian noise in n-dimensional space is obtained. The fractal dimension solely depends on the time behavior of the arbitrary correlation function of the noise, ranging from DX=1 for Orstein-Uhlenbeck input noise to any real number greater than 1 for fractional Brownian motions.
Resumo:
We study free second-order processes driven by dichotomous noise. We obtain an exact differential equation for the marginal density p(x,t) of the position. It is also found that both the velocity ¿(t) and the position X(t) are Gaussian random variables for large t.
Resumo:
We present exact equations and expressions for the first-passage-time statistics of dynamical systems that are a combination of a diffusion process and a random external force modeled as dichotomous Markov noise. We prove that the mean first passage time for this system does not show any resonantlike behavior.
Resumo:
We study the motion of an unbound particle under the influence of a random force modeled as Gaussian colored noise with an arbitrary correlation function. We derive exact equations for the joint and marginal probability density functions and find the associated solutions. We analyze in detail anomalous diffusion behaviors along with the fractal structure of the trajectories of the particle and explore possible connections between dynamical exponents of the variance and the fractal dimension of the trajectories.