913 resultados para INDEPENDENT COMPONENT ANALYSIS
Resumo:
Quality of fresh-cut carambola (Averrhoa carambola L) is related to many chemical and biochemical variables especially those involved with softening and browning, both influenced by storage temperature. To study these effects, a multivariate analysis was used to evaluate slices packaged in vacuum-sealed polyolefin bags, and stored at 2.5 degrees C, 5 degrees C and 10 degrees C, for up to 16 d. The quality of slices at each temperature was correlated with the duration of storage, O(2) and CO(2) concentration in the package, physical chemical constituents, and activity of enzymes involved in softening (PG) and browning (PPO) metabolism. Three quality groups were identified by hierarchical cluster analysis, and the classification of the components within each of these groups was obtained from a principal component analysis (PCA). The characterization of samples by PCA clearly distinguished acceptable and non-acceptable slices. According to PCA, acceptable slices presented higher ascorbic acid content, greater hue angles ((o)h) and final lightness (L-5) in the first principal component (PC1). On the other hand, non-acceptable slices presented higher total pectin content. PPO activity in the PC1. Non-acceptable slices also presented higher soluble pectin content, increased pectin solubilisation and higher CO(2) concentration in the second principal component (PC2) whereas acceptable slices showed lower total sugar content. The hierarchical cluster and PCA analyses were useful for discriminating the quality of slices stored at different temperatures. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to evaluate the antioxidant activity of honey from different entomological sources which were harvested in the dry season of 2008-2009 from distinct mesoregions of the State of Alagoas in the North East of Brazil. Honey produced by five different species of bees, even from the same region and season, showed a statistically significant difference (p <0.05) in the content of phenols, flavonoids and antioxidants, with higher levels of these compounds found in honey produced by Plebeia spp. and A. mellifera. Honey from stingless bees was quite different from that of A. mellifera, especially from the Plebeia spp. A dendrogram of the five species of bees showed the formation of 3 groups, one being formed by Apis mellifera, one by the genus Melipona (M. subnitida, M. quadrifasciata and M. scutellaris) and another formed by Plebeia spp.
Resumo:
OBJECTIVE: To identify clusters of the major occurrences of leprosy and their associated socioeconomic and demographic factors. METHODS: Cases of leprosy that occurred between 1998 and 2007 in Sao Jose do Rio Preto (southeastern Brazil) were geocodified and the incidence rates were calculated by census tract. A socioeconomic classification score was obtained using principal component analysis of socioeconomic variables. Thematic maps to visualize the spatial distribution of the incidence of leprosy with respect to socioeconomic levels and demographic density were constructed using geostatistics. RESULTS: While the incidence rate for the entire city was 10.4 cases per 100,000 inhabitants annually between 1998 and 2007, the incidence rates of individual census tracts were heterogeneous, with values that ranged from 0 to 26.9 cases per 100,000 inhabitants per year. Areas with a high leprosy incidence were associated with lower socioeconomic levels. There were identified clusters of leprosy cases, however there was no association between disease incidence and demographic density. There was a disparity between the places where the majority of ill people lived and the location of healthcare services. CONCLUSIONS: The spatial analysis techniques utilized identified the poorer neighborhoods of the city as the areas with the highest risk for the disease. These data show that health departments must prioritize politico-administrative policies to minimize the effects of social inequality and improve the standards of living, hygiene, and education of the population in order to reduce the incidence of leprosy.
Resumo:
Abstract Background Prostate cancer is a leading cause of death in the male population, therefore, a comprehensive study about the genes and the molecular networks involved in the tumoral prostate process becomes necessary. In order to understand the biological process behind potential biomarkers, we have analyzed a set of 57 cDNA microarrays containing ~25,000 genes. Results Principal Component Analysis (PCA) combined with the Maximum-entropy Linear Discriminant Analysis (MLDA) were applied in order to identify genes with the most discriminative information between normal and tumoral prostatic tissues. Data analysis was carried out using three different approaches, namely: (i) differences in gene expression levels between normal and tumoral conditions from an univariate point of view; (ii) in a multivariate fashion using MLDA; and (iii) with a dependence network approach. Our results show that malignant transformation in the prostatic tissue is more related to functional connectivity changes in their dependence networks than to differential gene expression. The MYLK, KLK2, KLK3, HAN11, LTF, CSRP1 and TGM4 genes presented significant changes in their functional connectivity between normal and tumoral conditions and were also classified as the top seven most informative genes for the prostate cancer genesis process by our discriminant analysis. Moreover, among the identified genes we found classically known biomarkers and genes which are closely related to tumoral prostate, such as KLK3 and KLK2 and several other potential ones. Conclusion We have demonstrated that changes in functional connectivity may be implicit in the biological process which renders some genes more informative to discriminate between normal and tumoral conditions. Using the proposed method, namely, MLDA, in order to analyze the multivariate characteristic of genes, it was possible to capture the changes in dependence networks which are related to cell transformation.
Resumo:
The present study aimed to comparatively verify the relation between the hermit crabs and the shells they use in two populations of Loxopagurus loxochelis. Samples were collected monthly from July 2002 to June 2003, at Caraguatatuba and Ubatuba Bay, São Paulo, Brazil. The animals sampled had their sex identified, were weighed and measured; their shells were identified, measured and weighed, and their internal volume determined. To relate the hermit crab's characteristics and the shells' variables, principal component analysis (PCA) and a regression tree were used. According to the PCA analysis, the three gastropod shells most frequently used by L. loxochelis varied in size. The regression tree successfully explained the relationship between the hermit crab's characteristics and the internal volume of the inhabited shell. It can be inferred that the relationship between the morphometry of an individual hermit crab and its shell is not straightforward and it is impossible to explain only on the basis of direct correlations between the body's and the shell's attributes. Several factors (such as the morphometry and the availability of the shell, environmental conditions and inter- and intraspecific competition) interact and seem to be taken into consideration by the hermit crabs when they choose a shell, resulting in the diversified pattern of shell occupancy shown here and elsewhere.
Resumo:
Analysts, politicians and international players from all over the world look at China as one of the most powerful countries on the international scenario, and as a country whose economic development can significantly impact on the economies of the rest of the world. However many aspects of this country have still to be investigated. First the still fundamental role played by Chinese rural areas for the general development of the country from a political, economic and social point of view. In particular, the way in which the rural areas have influenced the social stability of the whole country has been widely discussed due to their strict relationship with the urban areas where most people from the countryside emigrate searching for a job and a better life. In recent years many studies have mostly focused on the urbanization phenomenon with little interest in the living conditions in rural areas and in the deep changes which have occurred in some, mainly agricultural provinces. An analysis of the level of infrastructure is one of the main aspects which highlights the principal differences in terms of living conditions between rural and urban areas. In this thesis, I first carried out the analysis through the multivariate statistics approach (Principal Component Analysis and Cluster Analysis) in order to define the new map of rural areas based on the analysis of living conditions. In the second part I elaborated an index (Living Conditions Index) through the Fuzzy Expert/Inference System. Finally I compared this index (LCI) to the results obtained from the cluster analysis drawing geographic maps. The data source is the second national agricultural census of China carried out in 2006. In particular, I analysed the data refer to villages but aggregated at province level.
Resumo:
Coastal sand dunes represent a richness first of all in terms of defense from the sea storms waves and the saltwater ingression; moreover these morphological elements constitute an unique ecosystem of transition between the sea and the land environment. The research about dune system is a strong part of the coastal sciences, since the last century. Nowadays this branch have assumed even more importance for two reasons: on one side the born of brand new technologies, especially related to the Remote Sensing, have increased the researcher possibilities; on the other side the intense urbanization of these days have strongly limited the dune possibilities of development and fragmented what was remaining from the last century. This is particularly true in the Ravenna area, where the industrialization united to the touristic economy and an intense subsidence, have left only few dune ridges residual still active. In this work three different foredune ridges, along the Ravenna coast, have been studied with Laser Scanner technology. This research didn’t limit to analyze volume or spatial difference, but try also to find new ways and new features to monitor this environment. Moreover the author planned a series of test to validate data from Terrestrial Laser Scanner (TLS), with the additional aim of finalize a methodology to test 3D survey accuracy. Data acquired by TLS were then applied on one hand to test some brand new applications, such as Digital Shore Line Analysis System (DSAS) and Computational Fluid Dynamics (CFD), to prove their efficacy in this field; on the other hand the author used TLS data to find any correlation with meteorological indexes (Forcing Factors), linked to sea and wind (Fryberger's method) applying statistical tools, such as the Principal Component Analysis (PCA).
Resumo:
Definition of acute renal allograft rejection (AR) markers remains clinically relevant. Features of T-cell-mediated AR are tubulointerstitial and vascular inflammation associated with excessive extracellular matrix (ECM) remodeling, regulated by metzincins, including matrix metalloproteases (MMP). Our study focused on expression of metzincins (METS), and metzincins and related genes (MARGS) in renal allograft biopsies using four independent microarray data sets. Our own cases included normal histology (N, n = 20), borderline changes (BL, n = 4), AR (n = 10) and AR + IF/TA (n = 7). MARGS enriched in all data sets were further examined on mRNA and/or protein level in additional patients. METS and MARGS differentiated AR from BL, AR + IF/TA and N in a principal component analysis. Their expression changes correlated to Banff t- and i-scores. Two AR classifiers, based on METS (including MMP7, TIMP1), or on MARGS were established in our own and validated in the three additional data sets. Thirteen MARGS were significantly enriched in AR patients of all data sets comprising MMP7, -9, TIMP1, -2, thrombospondin2 (THBS2) and fibrillin1. RT-PCR using microdissected glomeruli/tubuli confirmed MMP7, -9 and THBS2 microarray results; immunohistochemistry showed augmentation of MMP2, -9 and TIMP1 in AR. TIMP1 and THBS2 were enriched in AR patient serum. Therefore, differentially expressed METS and MARGS especially TIMP1, MMP7/-9 represent potential molecular AR markers.
Resumo:
Dahl salt-sensitive (DS) and salt-resistant (DR) inbred rat strains represent a well established animal model for cardiovascular research. Upon prolonged administration of high-salt-containing diet, DS rats develop systemic hypertension, and as a consequence they develop left ventricular hypertrophy, followed by heart failure. The aim of this work was to explore whether this animal model is suitable to identify biomarkers that characterize defined stages of cardiac pathophysiological conditions. The work had to be performed in two stages: in the first part proteomic differences that are attributable to the two separate rat lines (DS and DR) had to be established, and in the second part the process of development of heart failure due to feeding the rats with high-salt-containing diet has to be monitored. This work describes the results of the first stage, with the outcome of protein expression profiles of left ventricular tissues of DS and DR rats kept under low salt diet. Substantial extent of quantitative and qualitative expression differences between both strains of Dahl rats in heart tissue was detected. Using Principal Component Analysis, Linear Discriminant Analysis and other statistical means we have established sets of differentially expressed proteins, candidates for further molecular analysis of the heart failure mechanisms.
Resumo:
Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.
Resumo:
OBJECTIVES In dental research multiple site observations within patients or taken at various time intervals are commonplace. These clustered observations are not independent; statistical analysis should be amended accordingly. This study aimed to assess whether adjustment for clustering effects during statistical analysis was undertaken in five specialty dental journals. METHODS Thirty recent consecutive issues of Orthodontics (OJ), Periodontology (PJ), Endodontology (EJ), Maxillofacial (MJ) and Paediatric Dentristry (PDJ) journals were hand searched. Articles requiring adjustment accounting for clustering effects were identified and statistical techniques used were scrutinized. RESULTS Of 559 studies considered to have inherent clustering effects, adjustment for this was made in the statistical analysis in 223 (39.1%). Studies published in the Periodontology specialty accounted for clustering effects in the statistical analysis more often than articles published in other journals (OJ vs. PJ: OR=0.21, 95% CI: 0.12, 0.37, p<0.001; MJ vs. PJ: OR=0.02, 95% CI: 0.00, 0.07, p<0.001; PDJ vs. PJ: OR=0.14, 95% CI: 0.07, 0.28, p<0.001; EJ vs. PJ: OR=0.11, 95% CI: 0.06, 0.22, p<0.001). A positive correlation was found between increasing prevalence of clustering effects in individual specialty journals and correct statistical handling of clustering (r=0.89). CONCLUSIONS The majority of studies in 5 dental specialty journals (60.9%) examined failed to account for clustering effects in statistical analysis where indicated, raising the possibility of inappropriate decreases in p-values and the risk of inappropriate inferences.
Resumo:
Soil spectroscopy was applied for predicting soil organic carbon (SOC) in the highlands of Ethiopia. Soil samples were acquired from Ethiopia’s National Soil Testing Centre and direct field sampling. The reflectance of samples was measured using a FieldSpec 3 diffuse reflectance spectrometer. Outliers and sample relation were evaluated using principal component analysis (PCA) and models were developed through partial least square regression (PLSR). For nine watersheds sampled, 20% of the samples were set aside to test prediction and 80% were used to develop calibration models. Depending on the number of samples per watershed, cross validation or independent validation were used.The stability of models was evaluated using coefficient of determination (R2), root mean square error (RMSE), and the ratio performance deviation (RPD). The R2 (%), RMSE (%), and RPD, respectively, for validation were Anjeni (88, 0.44, 3.05), Bale (86, 0.52, 2.7), Basketo (89, 0.57, 3.0), Benishangul (91, 0.30, 3.4), Kersa (82, 0.44, 2.4), Kola tembien (75, 0.44, 1.9),Maybar (84. 0.57, 2.5),Megech (85, 0.15, 2.6), andWondoGenet (86, 0.52, 2.7) indicating that themodels were stable. Models performed better for areas with high SOC values than areas with lower SOC values. Overall, soil spectroscopy performance ranged from very good to good.
Resumo:
Background The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. Methods A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. Results The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. Conclusion A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3D-fingerprint for proteins and implemented in a web-based database exploration tool comprising an interactive color-coded map of the PDB chemical space and a nearest neighbor search tool. The PDB-Explorer website is freely available at www.cheminfo.org/pdbexplorer and represents an unprecedented opportunity to interactively visualize and explore the structural diversity of the PDB.
Resumo:
Pathway based genome wide association study evolves from pathway analysis for microarray gene expression and is under rapid development as a complementary for single-SNP based genome wide association study. However, it faces new challenges, such as the summarization of SNP statistics to pathway statistics. The current study applies the ridge regularized Kernel Sliced Inverse Regression (KSIR) to achieve dimension reduction and compared this method to the other two widely used methods, the minimal-p-value (minP) approach of assigning the best test statistics of all SNPs in each pathway as the statistics of the pathway and the principal component analysis (PCA) method of utilizing PCA to calculate the principal components of each pathway. Comparison of the three methods using simulated datasets consisting of 500 cases, 500 controls and100 SNPs demonstrated that KSIR method outperformed the other two methods in terms of causal pathway ranking and the statistical power. PCA method showed similar performance as the minP method. KSIR method also showed a better performance over the other two methods in analyzing a real dataset, the WTCCC Ulcerative Colitis dataset consisting of 1762 cases, 3773 controls as the discovery cohort and 591 cases, 1639 controls as the replication cohort. Several immune and non-immune pathways relevant to ulcerative colitis were identified by these methods. Results from the current study provided a reference for further methodology development and identified novel pathways that may be of importance to the development of ulcerative colitis.^
Resumo:
Developing countries are experiencing unprecedented levels of economic growth. As a result, they will be responsible for most of the future growth in energy demand and greenhouse gas (GHG) emissions. Curbing GHG emissions in developing countries has become one of the cornerstones of a future international agreement under the United Nations Framework Convention for Climate Change (UNFCCC). However, setting caps for developing countries’ GHG emissions has encountered strong resistance in the current round of negotiations. Continued economic growth that allows poverty eradication is still the main priority for most developing countries, and caps are perceived as a constraint to future growth prospects. The development, transfer and use of low-carbon technologies have more positive connotations, and are seen as the potential path towards low-carbon development. So far, the success of the UNFCCC process in improving the levels of technology transfer (TT) to developing countries has been limited. This thesis analyses the causes for such limited success and seeks to improve on the understanding about what constitutes TT in the field of climate change, establish the factors that enable them in developing countries and determine which policies could be implemented to reinforce these factors. Despite the wide recognition of the importance of technology and knowledge transfer to developing countries in the climate change mitigation policy agenda, this issue has not received sufficient attention in academic research. Current definitions of climate change TT barely take into account the perspective of actors involved in actual climate change TT activities, while respective measurements do not bear in mind the diversity of channels through which these happen and the outputs and effects that they convey. Furthermore, the enabling factors for TT in non-BRIC (Brazil, Russia, India, China) developing countries have been seldom investigated, and policy recommendations to improve the level and quality of TTs to developing countries have not been adapted to the specific needs of highly heterogeneous countries, commonly denominated as “developing countries”. This thesis contributes to enriching the climate change TT debate from the perspective of a smaller emerging economy (Chile) and by undertaking a quantitative analysis of enabling factors for TT in a large sample of developing countries. Two methodological approaches are used to study climate change TT: comparative case study analysis and quantitative analysis. Comparative case studies analyse TT processes in ten cases based in Chile, all of which share the same economic, technological and policy frameworks, thus enabling us to draw conclusions on the enabling factors and obstacles operating in TT processes. The quantitative analysis uses three methodologies – principal component analysis, multiple regression analysis and cluster analysis – to assess the performance of developing countries in a number of enabling factors and the relationship between these factors and indicators of TT, as well as to create groups of developing countries with similar performances. The findings of this thesis are structured to provide responses to four main research questions: What constitutes technology transfer and how does it happen? Is it possible to measure technology transfer, and what are the main challenges in doing so? Which factors enable climate change technology transfer to developing countries? And how do different developing countries perform in these enabling factors, and how can differentiated policy priorities be defined accordingly? vi Resumen Los paises en desarrollo estan experimentando niveles de crecimiento economico sin precedentes. Como consecuencia, se espera que sean responsables de la mayor parte del futuro crecimiento global en demanda energetica y emisiones de Gases de Efecto de Invernadero (GEI). Reducir las emisiones de GEI en los paises en desarrollo es por tanto uno de los pilares de un futuro acuerdo internacional en el marco de la Convencion Marco de las Naciones Unidas para el Cambio Climatico (UNFCCC). La posibilidad de compromisos vinculantes de reduccion de emisiones de GEI ha sido rechazada por los paises en desarrollo, que perciben estos limites como frenos a su desarrollo economico y a su prioridad principal de erradicacion de la pobreza. El desarrollo, transferencia y uso de tecnologias bajas en carbono tiene connotaciones mas positivas y se percibe como la via hacia un crecimiento bajo en carbono. Hasta el momento, la UNFCCC ha tenido un exito limitado en la promocion de transferencias de tecnologia (TT) a paises en desarrollo. Esta tesis analiza las causas de este resultado y busca mejorar la comprension sobre que constituye transferencia de tecnologia en el area de cambio climatico, cuales son los factores que la facilitan en paises en desarrollo y que politicas podrian implementarse para reforzar dichos factores. A pesar del extendido reconocimiento sobre la importancia de la transferencia de tecnologia a paises en desarrollo en la agenda politica de cambio climatico, esta cuestion no ha sido suficientemente atendida por la investigacion existente. Las definiciones actuales de transferencia de tecnologia relacionada con la mitigacion del cambio climatico no tienen en cuenta la diversidad de canales por las que se manifiestan o los efectos que consiguen. Los factores facilitadores de TT en paises en desarrollo no BRIC (Brasil, Rusia, India y China) apenas han sido investigados, y las recomendaciones politicas para aumentar el nivel y la calidad de la TT no se han adaptado a las necesidades especificas de paises muy heterogeneos aglutinados bajo el denominado grupo de "paises en desarrollo". Esta tesis contribuye a enriquecer el debate sobre la TT de cambio climatico con la perspectiva de una economia emergente de pequeno tamano (Chile) y el analisis cuantitativo de factores que facilitan la TT en una amplia muestra de paises en desarrollo. Se utilizan dos metodologias para el estudio de la TT a paises en desarrollo: analisis comparativo de casos de estudio y analisis cuantitativo basado en metodos multivariantes. Los casos de estudio analizan procesos de TT en diez casos basados en Chile, para derivar conclusiones sobre los factores que facilitan u obstaculizan el proceso de transferencia. El analisis cuantitativo multivariante utiliza tres metodologias: regresion multiple, analisis de componentes principales y analisis cluster. Con dichas metodologias se busca analizar el posicionamiento de diversos paises en cuanto a factores que facilitan la TT; las relaciones entre dichos factores e indicadores de transferencia tecnologica; y crear grupos de paises con caracteristicas similares que podrian beneficiarse de politicas similares para la promocion de la transferencia de tecnologia. Los resultados de la tesis se estructuran en torno a cuatro preguntas de investigacion: .Que es la transferencia de tecnologia y como ocurre?; .Es posible medir la transferencia de tecnologias de bajo carbono?; .Que factores facilitan la transferencia de tecnologias de bajo carbono a paises en desarrollo? y .Como se puede agrupar a los paises en desarrollo en funcion de sus necesidades politicas para la promocion de la transferencia de tecnologias de bajo carbono?