877 resultados para IMAGE PATTERN CLASSIFICATION
Resumo:
This paper presents a Computer Aided Diagnosis (CAD) system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to determine whether a breast tumor is malignant or not without the need for surgeries. The developed system uses a combination of wavelets and Artificial Neural Networks (ANN) and is executed on an Altera DE2-115 Development Kit, a kit containing a Field-Programmable Gate Array (FPGA) that allows the system to be smaller, cheaper and more energy efficient. Results have shown that the system was able to correctly classify 96.67% of test samples, which can be used as a second opinion by radiologists in breast cancer early diagnosis. (C) 2013 The Authors. Published by Elsevier B.V.
Resumo:
In Computer-Aided Diagnosis-based schemes in mammography analysis each module is interconnected, which directly affects the system operation as a whole. The identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest for further image segmentation. This study aims to evaluate the performance of three techniques in classifying regions of interest as containing masses or without masses (without clinical findings), as well as the main contribution of this work is to introduce the Optimum-Path Forest (OPF) classifier in this context, which has never been done so far. Thus, we have compared OPF against with two sorts of neural networks in a private dataset composed by 120 images: Radial Basis Function and Multilayer Perceptron (MLP). Texture features have been used for such purpose, and the experiments have demonstrated that MLP networks have been slightly better than OPF, but the former is much faster, which can be a suitable tool for real-time recognition systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this project the Pattern Recognition Problem is approached with the Support Vector Machines (SVM) technique, a binary method of classification that provides the best solution separating the data in the better way with a hiperplan and an extension of the input space dimension, as a Machine Learning solution. The system aims to classify two classes of pixels chosen by the user in the interface in the interest selection phase and in the background selection phase, generating all the data to be used in the LibSVM library, a library that implements the SVM, illustrating the library operation in a casual way. The data provided by the interface is organized in three types, RGB (Red, Green and Blue color system), texture (calculated) or RGB + texture. At last the project showed successful results, where the classification of the image pixels was showed as been from one of the two classes, from the interest selection area or from the background selection area. The simplest user view of results classification is the RGB type of data arrange, because it’s the most concrete way of data acquisition
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Non-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Color texture classification is an important step in image segmentation and recognition. The color information is especially important in textures of natural scenes, such as leaves surfaces, terrains models, etc. In this paper, we propose a novel approach based on the fractal dimension for color texture analysis. The proposed approach investigates the complexity in R, G and B color channels to characterize a texture sample. We also propose to study all channels in combination, taking into consideration the correlations between them. Both these approaches use the volumetric version of the Bouligand-Minkowski Fractal Dimension method. The results show a advantage of the proposed method over other color texture analysis methods. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this cross-sectional, descriptive study was to identify the activities of the Nursing Intervention Classification considered as priorities for an Ineffective Breathing Pattern and not performed for elderly inpatients of a teaching hospital in the state of Goias. The study participants were 43 nursing professionals, and data collection was performed in the period spanning October to December 2008, after receiving approval from the Ethics Committee. It was observed that among the 67 activities considered to be priorities for the referred diagnosis, only seven were performed by all of the participants; the other activities, with a varied frequency, were not performed, with the main reason cited being that a professional from a different area completed the activity. It is understood that the fact that the nursing staff does not perform these activities can cause lack of complete coverage in nursing care; therefore there is a need for a legal apparatus to describe the activities that comprise professional practice exclusive to nursing personnel and those activities that have an interdisciplinary nature.
Resumo:
Biogeography has been difficult to apply as a methodological approach because organismic biology is incomplete at levels where the process of formulating comparisons and analogies is complex. The study of insect biogeography became necessary because insects possess numerous evolutionary traits and play an important role as pollinators. Among insects, the euglossine bees, or orchid bees, attract interest because the study of their biology allows us to explain important steps in the evolution of social behavior and many other adaptive tradeoffs. We analyzed the distribution of morphological characteristics in Colombian orchid bees from an ecological perspective. The aim of this study was to observe the distribution of these attributes on a regional basis. Data corresponding to Colombian euglossine species were ordered with a correspondence analysis and with subsequent hierarchical clustering. Later, and based on community proprieties, we compared the resulting hierarchical model with the collection localities to seek to identify a biogeographic classification pattern. From this analysis, we derived a model that classifies the territory of Colombia into 11 biogeographic units or natural clusters. Ecological assumptions in concordance with the derived classification levels suggest that species characteristics associated with flight performance, nectar uptake, and social behavior are the factors that served to produce the current geographical structure.
Resumo:
Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
Resumo:
Fractal theory presents a large number of applications to image and signal analysis. Although the fractal dimension can be used as an image object descriptor, a multiscale approach, such as multiscale fractal dimension (MFD), increases the amount of information extracted from an object. MFD provides a curve which describes object complexity along the scale. However, this curve presents much redundant information, which could be discarded without loss in performance. Thus, it is necessary the use of a descriptor technique to analyze this curve and also to reduce the dimensionality of these data by selecting its meaningful descriptors. This paper shows a comparative study among different techniques for MFD descriptors generation. It compares the use of well-known and state-of-the-art descriptors, such as Fourier, Wavelet, Polynomial Approximation (PA), Functional Data Analysis (FDA), Principal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX), kernel PCA, Independent Component Analysis (ICA), geometrical and statistical features. The descriptors are evaluated in a classification experiment using Linear Discriminant Analysis over the descriptors computed from MFD curves from two data sets: generic shapes and rotated fish contours. Results indicate that PCA, FDA, PA and Wavelet Approximation provide the best MFD descriptors for recognition and classification tasks. (C) 2012 Elsevier B.V. All rights reserved.