845 resultados para Hydrophobic Recovery
Resumo:
Experimental data are presented to show the influence of the enhanced oil recovery system's components, alkali, surfactant, and polymer, on the demulsification and light transmittance of the water separated from the emulsions. Among which, the effects of surfactants, polyoxyethylene (10) alkylphenol ether (OP-10) and sodium petroleum sulfonate (CY-1) on emulsion stability, are the strongest of any component, the effects of polymer, hydrolytic polyacrylamide (HPAM) 3530S, on emulsion stability are the weakest. This research also suggests a possible emulsion minimization approach, which could be implemented in refineries utilizing microwave radiation. Compared with conventional heating, microwave radiation can effectively enhance the demulsification rate by an order of magnitude and increase the light transmittance of the water separated from the emulsions. The demulsification efficiency may reach 100% in a very short. time under microwave radiation.
Resumo:
Molecularly imprinted polymers prepared using acrylamide as the hydrogen bonding functional monomer exhibited good enantiomeric recognition properties in aqueous solutions. Our results indicate that the recognition improved with increased mobile phase water percentage and ionic strength, and was also very much pH dependent upon the ionisation properties of the sample molecules. The results can be interpreted in terms of specific hydrophobic interactions between the enantiomeric species and the recognition sites of imprinted polymers. A study of substrate selectivity showed differences between a pure organic system and a water/organic system as the mobile phases. The hydrophobicity of the test compounds was found to be an important parameter in determining the selectivity.
Resumo:
This report describes a facile route to prepare the vesicles and large compound micelles (LCMs) from a series of poly(epsilon-benzyloxycarbonyl L-lysine)-block-poly[diethylene glycol bis(3-amino propyl) ether]-block-poly(epsilon-benzyloxycarbonyl L-lySine) (PZLL-DGBE-PZLL) in their water solution, depending on molecular weight of the polypeptides. A pyrene probe is used to demonstrate the aggregate formation of PZLL-DGBE-PZLL in solution, and also to measure their critical micelle concentration as a function of molecular weight of the polymer.
Resumo:
Synergistic extraction and recovery of Cerium(IV) (Ce(IV)) and Fluorin (F) from sulfuric solutions using mixture of Cyanex 923 and di-2-ethylhexyl phosphoric acid (D2EHPA) in n-heptane have been carried out. in order to investigate the synergistic extraction of Cyanex 923 + D2EHPA, extraction Ce(IV), F, Ce(III) and Ce-F mixture solution using D2EHPA or Cyanex 923 as extractant alone were studied firstly, and then Synergistic extraction of Ce(IV), F and Ce(IV)-F mixture solution with D2EHPA + Cyanex 923 were carried out. The largest synergistic coefficient of Ce(IV) is obtained at the mole fraction X-Cyanex (923) = 0.8. The synergistic enhancement coefficients (R-max) obtained for Ce(IV) are 23.12 in Ce(IV) solution, and in Ce-F mixed solution R-max for Ce(IV) and F are 2.24 and 3.25 respectively.
Resumo:
In this study, binodal curves and tie line data of [Amim]Cl + salt (K3PO4, K2HPO4, K2CO3) + water aqueous biphasic systems (ABS) were measured and correlated satisfactorily with the Merchuk equation and Othmer-Tobias and Bancroft equations, respectively. [Amim]Cl could be recovered from aqueous solutions using the ABS, and the recovery efficiency could reach 96.80%. The recovery efficiency was influenced by the concentrations of the salts and their Homeister series: K3PO4 > K2HPO4 > K2CO3. Our method provides a new and effective route for the recovery of hydrophilic IL using [Amim]Cl + salt + water ABS from aqueous solutions.
Resumo:
Four kinds of functional poly(gamma-benzyl-L-glutamate) (PBLG) copolymers containing chloro, azido, allyl or propargyl groups on the side chains were synthesized through ester exchange reactions of PBLG with functional alcohols without any protection and de-protection process. Hydrolysis of PBLG, which was found during the ester exchange reaction under low ratios of alcohol to the repeat units of PBLG, was thoroughly investigated, and could be successfully depressed by addition of certain amount of benzyl alcohol to the reaction system. Click chemistry reactions of the azidized or propargylated copolymers, thiol-ene reaction of the allyllated copolymer were taken successfully, indicating that the functional groups on the copolymers were still reactive.
Resumo:
A series of novel multiblock copolymers based on sulfonated copolyimides were developed and evaluated for use as proton exchange membranes (PEMs). In these multiblock copolyimides, the hydrophilic blocks were composed of the sulfonated dianhydride and the sulfonated diamine, with sulfonic acid groups on every aromatic ring (i.e., fully sulfonated). This molecular design was implemented to effectively enhance the proton conductivity. The properties of the multiblock copolyimides with varying IEC values or block lengths were investigated to obtain a better understanding of the relationship between molecular structure and properties of proton exchange membranes. The water uptake and proton conductivity were found to be highly dependent upon their structure. The block copolymers displayed significantly higher proton conductivities, especially at low relative humidity than the random copolymers with a similar IEC.
Resumo:
Perfectly hydrophobic (PHO) coatings consisting of silicone nanofibers have been obtained via a solution process using methyltrialkoxysilanes as precursors. On the basis of thermal gravimetry and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FTIR) results, the formula of the nanofibers was tentatively given and a possible growth mechanism of the nanofibers was proposed. Because of the low affinity between the coatings and the small water droplet, when using these coatings as substrate for collecting water vapor, the harvesting efficiency could be enhanced as compared with those from bare glass substrate for more than 50% under 25 degrees C and 60-90% relative humidity. By removing the surface methyl group by heat treatment or ultraviolet (UV) irradiation, the as-prepared perfectly hydrophobic surface can be converted into a superhydrophilic surface.
Resumo:
BACKGROUND: Ionic liquids (ILs) as environmentally benign solvents have been widely studied in the application of solvent extraction. However, few applications have been successfully industrialized because of the difficult stripping of metal ions or the loss of components of the ILs. More work needs to be done to investigate the extraction behaviour of IL-based extraction systems. In this work, the extraction behaviour of Ce(IV), Th(IV) and some trivalent rare earth (RE) nitrates by di(2-ethylhexyl) 2-ethylhexylphosphonate (DEHEHP) in the IL, 1-methyl-3-octylimidazolium hexafluorophosphate ([C(8)mim]PF6), was investigated and compared with that in the n-heptane system. In particular, the effect of F(I) on the extraction mechanism for Ce(IV) and its separation from Th(IV) was investigated. Otherwise, the recovery efficiency of Ce(IV) and F(I) from a practical bastnasite leach liquor was examined using IL based extraction.