955 resultados para Human androgen receptor gene
Resumo:
It has long been known from work in both Drosophila and vertebrate systems that the hedgehog signalling pathway is pivotal to embryonic development, but the past 5 years has seen an increase in our understanding of how members of this pathway are crucial to the processes of tumorigenesis. This important link was firmly established with the discovery that mutations in the gene encoding the hedgehog receptor molecule patched are responsible for both familial and sporadic forms of basal cell carcinoma (BCC), as well as a number of other tumour types. It is now known that a number of key members of the hedgehog cascade are involved in tumorigenesis, and dysregulation of this pathway appears to be a key element in the aetiology of a range of tumours. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The retinoid orphan-related receptor-alpha (RORalpha) is a member of the ROR subfamily of orphan receptors and acts as a constitutive activator of transcription in the absence of exogenous ligands. To understand the basis of this activity, we constructed a homology model of Rill using the closely related TRbeta as a template. Molecular modeling suggested that bulky hydrophobic side chains occupy the RORa ligand cavity leaving a small but distinct cavity that may be involved in receptor stabilization. This model was subject to docking simulation with a receptor-interacting peptide from the steroid receptor coactivator, GR-interacting protein-1, which delineated a coactivator binding surface consisting of the signature motif spanning helices 3-5 and helix 12 [activation function 2 (AF2)]. Probing this surface with scanning alanine mutagenesis showed structural and functional equivalence between homologous residues of RORalpha and TRbeta. This was surprising (given that Rill is a ligand-independent activator, whereas TRbeta has an absolute requirement for ligand) and prompted us to use molecular modeling to identify differences between Rill and TRbeta in the way that the All helix interacts with the rest of the receptor. Modeling highlighted a nonconserved amino acid in helix 11 of RORa (Phe491) and a short-length of 3.10 helix at the N terminus of AF2 which we suggest i) ensures that AF2 is locked permanently in the holoconformation described for other liganded receptors and thus 2) enables ligand-independent recruitment of coactivators. Consistent with this, mutation of RORa Phe491 to either methionine or alanine (methionine is the homologous residue in TRbeta), reduced and ablated transcriptional activation and recruitment of coactivators, respectively. Furthermore, we were able to reconstitute transcriptional activity for both a deletion mutant of Ill lacking All and Phe491 Met, by overexpression of a GAL-AF2 fusion protein, demonstrating ligand-independent recruitment of AF2 and a role for Phe491 in recruiting AF2.
Resumo:
We report a novel activating mutation (E604K) of the calcium-sensing receptor in a family with autosomal dominant hypocalcemia. Whereas all affected individuals exhibited marked hypocalcemia, some cases with untreated hypocalcemia exhibited seizures in infancy, whereas others were largely asymptomatic from birth into adulthood. The missense mutation E604K (G2182A, GenBank accession no. U20759), which affects an amino acid residue in the C terminus of the cysteine-rich domain of the extracellular head, co-segregated with hypocalcemia in all seven individuals for whom DNA was available. Two unaffected, normocalcemic members of the family did not exhibit the mutation. The molecular impact of the mutation on two key components of the signaling response was assessed in HEK-293 cells transiently transfected with cDNA corresponding to either the wild-type calcium-sensing receptor or the E604K mutation derived by site-directed mutagenesis. There was a significant leftward shift in the concentration response curves for the effects of extracellular Ca2+ on both intracellular Ca2+ mobilization (determined by aequorin luminescence) and MAPK activity (determined by luciferase expression). The C terminus of the cysteine-rich domain of the extracellular head may normally act to suppress receptor activity in the presence of low extracellular Ca2+ concentrations.
Resumo:
NOR-1/NR4A3 is an orphan member of the nuclear hormone receptor superfamily. NOR-1 and its close relatives Nurr1 and Nur77 are members of the NR4A subgroup of nuclear receptors. Members of the NR4A subgroup are induced through multiple signal transduction pathways. They have been implicated in cell proliferation, differentiation, T-cell apoptosis, chondrosarcomas, neurological disorders, inflammation, and atherogenesis. However, the mechanism of transcriptional activation, coactivator recruitment, and agonist-mediated activation remain obscure. Hence, we examined the molecular basis of NOR-1-mediated activation. We observed that NOR-1 trans-activates gene expression in a cell- and target-specific manner; moreover, it operates in an activation function (AF)-1-dependent manner. The N-terminal AF-1 domain delimited to between amino acids 1 and 112, preferentially recruits the steroid receptor coactivator (SRC). Furthermore, SRC-2 modulates the activity of the AF-1 domain but not the C-terminal ligand binding domain (LBD). Homology modeling indicated that the NOR-1 LBD was substantially different from that of hRORbeta, a closely related AF-2-dependent receptor. In particular, the hydrophobic cleft characteristic of nuclear receptors was replaced with a very hydrophilic surface with a distinct topology. This observation may account for the inability of this nuclear receptor LBD to efficiently mediate cofactor recruitment and transcriptional activation. In contrast, the N-terminal AF-1 is necessary for cofactor recruitment and can independently conscript coactivators. Finally, we demonstrate that the purine anti-metabolite 6-mercaptopurine, a widely used antineoplastic and anti-inflammatory drug, activates NOR-1 in an AF-1-dependent manner. Additional 6-mercaptopurine analogs all efficiently activated NOR-1, suggesting that the signaling pathways that modulate proliferation via inhibition of de novo purine and/or nucleic acid biosynthesis are involved in the regulation NR4A activity. We hypothesize that the NR4A subgroup mediates the genotoxic stress response and suggest that this subgroup may function as sensors that respond to genotoxicity.
Resumo:
Prostate cancer (PCa) is a major cause of cancer-related morbidity and mortality worldwide. Although early disease is often efficiently managed therapeutically, available options for advanced disease are mostly ineffective. Aberrant DNA methylation associated with gene-silencing of cancer-related genes is a common feature of PCa. Therefore, DNA methylation inhibitors might constitute an attractive alternative therapy. Herein, we evaluated the anti-cancer properties of hydralazine, a non-nucleoside DNA methyltransferases (DNMT) inhibitor, in PCa cell lines. In vitro assays showed that hydralazine exposure led to a significant dose and time dependent growth inhibition, increased apoptotic rate and decreased invasiveness. Furthermore, it also induced cell cycle arrest and DNA damage. These phenotypic effects were particularly prominent in DU145 cells. Following hydralazine exposure, decreased levels of DNMT1, DNMT3a and DNMT3b mRNA and DNMT1 protein were depicted. Moreover, a significant decrease in GSTP1, BCL2 and CCND2 promoter methylation levels, with concomitant transcript re-expression, was also observed. Interestingly, hydralazine restored androgen receptor expression, with upregulation of its target p21 in DU145 cell line. Protein array analysis suggested that blockage of EGF receptor signaling pathway is likely to be the main mechanism of hydralazine action in DU145 cells. Our data demonstrate that hydralazine attenuated the malignant phenotype of PCa cells, and might constitute a useful therapeutic tool.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function.
Resumo:
The klotho gene may be involved in the aging process. Klotho is a coactivator of FGF23, a regulator of phosphate and vitamin D metabolism. It has also been reported to be downregulated in insulin resistance syndromes and paradoxically to directly inhibit IGF-1 and insulin signaling. Our aim was to study klotho's regulation and effects on insulin and IGF-1 signaling to unravel this paradox. We studied klotho tissue distribution and expression by quantitative real-time polymerase chain reaction and Western blotting in obese Zucker rats and high-fat fed Wistar rats, two models of insulin resistance. Klotho was expressed in kidneys but at much lower levels (<1.5%) in liver, muscle, brain, and adipose tissue. There were no significant differences between insulin resistant and control animals. We next produced human recombinant soluble klotho protein (KLEC) and studied its effects on insulin and IGF-1 signaling in cultured cells. In HEK293 cells, FGF23 signaling (judged by FRS2-alpha and ERK1/2 phosphorylation) was activated by conditioned media from KLEC-producing cells (CM-KLEC); however, IGF-1 signaling was unaffected. CM-KLEC did not inhibit IGF-1 and insulin signaling in L6 and Hep G2 cells, as judged by Akt and ERK1/2 phosphorylation. We conclude that decreased klotho expression is not a general feature of rodent models of insulin resistance. Further, the soluble klotho protein does not inhibit IGF-1 and/or insulin signaling in HEK293, L6, and HepG2 cells, arguing against a direct role of klotho in insulin signaling. However, the hypothesis that klotho indirectly regulates insulin sensitivity via FGF23 activation remains to be investigated.
Resumo:
BACKGROUND: Humanized murine models comprise a new tool to analyze novel therapeutic strategies for allergic diseases of the intestine.¦OBJECTIVE: In this study we developed a human PBMC-engrafted murine model of allergen-driven gut inflammation and analyzed the underlying immunologic mechanisms.¦METHODS: Nonobese diabetic (NOD)-scid-γc(-/-) mice were injected intraperitoneally with human PBMCs from allergic donors together with the respective allergen or not. Three weeks later, mice were challenged with the allergen orally or rectally, and gut inflammation was monitored with a high-resolution video miniendoscopic system, as well as histologically.¦RESULTS: Using the aeroallergens birch or grass pollen as model allergens and, for some donors, also hazelnut allergen, we show that allergen-specific human IgE in murine sera and allergen-specific proliferation and cytokine production of human CD4(+) T cells recovered from spleens after 3 weeks could only be measured in mice treated with PBMCs plus allergen. Importantly, these mice had the highest endoscopic scores evaluating translucent structure, granularity, fibrin, vascularity, and stool after oral or rectal allergen challenge and a strong histologic inflammation of the colon. Analyzing the underlying mechanisms, we demonstrate that allergen-associated colitis was dependent on IgE, human IgE receptor-expressing effector cells, and the mediators histamine and platelet-activating factor.¦CONCLUSION: These results demonstrate that allergic gut inflammation can be induced in human PBMC-engrafted mice, allowing the investigation of pathophysiologic mechanisms of allergic diseases of the intestine and evaluation of therapeutic interventions.
Resumo:
PIKfyve is a kinase encoded by pip5k3 involved in phosphatidylinositols (PdtIns) pathways. These lipids building cell membranes have structural functions and are involved in complex intracellular regulations. Mutations in human PIP5K3 are associated with François-Neetens mouchetée fleck corneal dystrophy [Li, S., Tiab, L., Jiao, X., Munier, F.L., Zografos, L., Frueh, B.E., Sergeev, Y., Smith, J., Rubin, B., Meallet, M.A., Forster, R.K., Hejtmancik, J.F., Schorderet, D.F., 2005. Mutations in PIP5K3 are associated with François-Neetens mouchetee fleck corneal dystrophy. Am. J. Hum. Genet. 77, 54-63]. We cloned the zebrafish pip5k3 and report its molecular characterization and expression pattern in adult fish as well as during development. The zebrafish PIKfyve was 70% similar to the human homologue. The gene encompassed 42 exons and presented four alternatively spliced variants. It had a widespread expression in the adult organs and was localized in specific cell types in the eye as the cornea, lens, ganglion cell layer, inner nuclear layer and outer limiting membrane. Pip5k3 transcripts were detected in early cleavage stage embryos. Then it was uniformly expressed at 10 somites, 18 somites and 24 hpf. Its expression was then restricted to the head region at 48 hpf, 72 hpf and 5 dpf and partial expression was found in somites at 72 hpf and 5 dpf. In situ on eye sections at 3 dpf showed a staining mainly in lens, outer limiting membrane, inner nuclear layer and ganglion cell layer. A similar expression pattern was found in the eye at 5 dpf. A temporal regulation of the spliced variants was observed at 1, 3 and 5 dpf and they were also found in the adult eye.
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-alpha/beta or IFN-gamma receptor gene. We found that the SAg response to MMTV was not modified in IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-gammaR(0/0) mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later.
Resumo:
Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.
Resumo:
The protein sequence deduced from the open reading frame of a human placental cDNA encoding a cAMP-responsive enhancer (CRE)-binding protein (CREB-327) has structural features characteristic of several other transcriptional transactivator proteins including jun, fos, C/EBP, myc, and CRE-BP1. Results of Southwestern analysis of nuclear extracts from several different cell lines show that there are multiple CRE-binding proteins, which vary in size in cell lines derived from different tissues and animal species. To examine the molecular diversity of CREB-327 and related proteins at the nucleic acid level, we used labeled cDNAs from human placenta that encode two different CRE-binding proteins (CREB-327 and CRE-BP1) to probe Northern and Southern blots. Both probes hybridized to multiple fragments on Southern blots of genomic DNA from various species. Alternatively, when a human placental c-jun probe was hybridized to the same blot, a single fragment was detected in most cases, consistent with the intronless nature of the human c-jun gene. The CREB-327 probe hybridized to multiple mRNAs, derived from human placenta, ranging in size from 2-9 kilobases. In contrast, the CRE-BP1 probe identified a single 4-kilobase mRNA. Sequence analyses of several overlapping human genomic cosmid clones containing CREB-327 sequences in conjunction with polymerase chain reaction indicates that the CREB-327/341 cDNAs are composed of at least eight or nine exons, and analyses of human placental cDNAs provide direct evidence for at least one alternatively spliced exon. Analyses of mouse/hamster-human hybridoma DNAs by Southern blotting and polymerase chain reaction localizes the CREB-327/341 gene to human chromosome 2. The results indicate that there is a dichotomy of CREB-like proteins, those that are related by overall structure and DNA-binding specificity as well as those that are related by close similarities of primary sequences.
Resumo:
1. In some tissues, a decrease in the number of cell surface receptors and alterations of the receptor coupling have been proposed as possible mechanisms mediating the deleterious effects of bacterial endotoxin in septic shock. 2. The effects of bacterial lipopolysaccharide (Escherichia coli 0111-B4; LPS) on vascular angiotensin II and vasopressin receptors have been examined in cultured aortic smooth muscle cells (SMC) of the rat by use of radioligand binding techniques. 3. In vascular SMC exposed to 1 micrograms ml-1 endotoxin for 24 h, a significant increase in angiotensin II binding was found. The change in [125I]-angiotensin II binding corresponded to an increase in the number of receptors whereas the affinity of the receptors was not affected by LPS. In contrast, no change in [3H]-vasopressin binding was observed. 4. The pharmacological characterization of angiotensin II binding sites in control and LPS-exposed cells demonstrated that LPS induced an increase in the AT1 subtype of the angiotensin II receptors. Receptor coupling as evaluated by measuring total inositol phosphates was not impaired by LPS. 5. The effect of LPS on the angiotensin II receptor was dose-, time- and protein-synthesis dependent and was associated with an increased expression of the receptor gene. 6. The ability of LPS to increase angiotensin II binding in cultured vascular SMC was independent of the endotoxin induction of NO-synthase. 7. These results suggest that, besides inducing factors such as cytokines and NO-synthase, endotoxin may enhance the expression of cell surface receptors. The surprising increase in angiotensin II binding in LPS exposed VSM cells may represent an attempt by the cells to compensate for the decreased vascular responsiveness. It may also result from a non-specific LPS-related induction of genes.
Resumo:
Individuals need to adapt to their local environment in order to survive. When selection pressures differ in local populations, polymorphism can evolve. Colour polymorphism is one of the most obvious polymorphisms since it is readily observable. Different sources of colouration exist, but melanin-based colouration is one of the most common in birds. The melanocortin system produces this colouration and because the melanocortin system has pleiotropic effects on behavioural and physiological traits, it is a good candidate to be an underlying mechanism to explain the maintenance of colour polymorphism. In this thesis I studied three different raptors which all display melanin-based colouration; barn owls (Tyto alba), tawny owls (Strix aluco) and Eurasian kestrels (Falco tinnunculus). The main question was if there was a relationship between melanin-based colouration and individual behavioural differences. The underlying hypothesis is that colour could be a signal of certain adaptive traits. Our goal was to find evolutionary explanations for the persistence of colour polymorphism. I found that nestling kestrels and barn owls differ in anti-predatory behaviour, with respect to their melanic colouration (chapters 1 and 2). Darker individuals show less reaction to human handling, but in kestrels aggression and colouration are related in opposite ways than in barn owls. More reddish barn owls travel greater distances in natal dispersal and this behaviour is repeatable between parents and same sex offspring (chapter 3). Dark reddish tawny owls defend their nests more intensely against intruders and appear to suffer less from nest predation (chapter 4). Finally I show that polymorphism in the Melanocortin 1 receptor gene (MC1R), which is strongly correlated with reddish colouration in the barn owl, is related to natal dispersal distance, providing a first indication for a genetic basis of the relation between this behaviour and colouration (chapter 5). My results demonstrate a clear link between melanin-based colouration and animal personality traits. I demonstrated this relation in three different species, which shows there is most likely a general underlying mechanism responsible. Different predation pressures might have shaped the reactions to predation, but also differences in sex-related colouration. Male-like and female-like colouration might signal more or less aggressive behaviour. Fluctuating environmental conditions might cause different individual strategies to produce equal reproductive success. The melanocortin system with its pleiotropic effects might be an underlying mechanism, as suggested by the results from the genetic polymorphism, the similar results found in these three species and by the similar relations reported in other species. This thesis demonstrates that colouration and individual differences are correlated and it provides the first glimpse of an underlying system. We can now conduct a more directed search for underlying mechanisms and evolutionary explanations with the use of quantitative genetic methods.