912 resultados para High-rise building
Resumo:
Based on discrete samples, we report new high-resolution records of the ~185 kyr Iceland Basin (IB) geomagnetic excursion from Ocean Drilling Project (ODP) Site 1063 on the Bermuda Rise (sedimentation rate 32 cm/kyr) and from ODP Site 983 in the far North Atlantic (sedimentation rate 18 cm/kyr). Two records from Holes 1063A and 1063B are very consistent, and provide the highest resolution of the detailed field behaviour during the IB excursion obtained so far. Inclination records from Holes 983B and 983C in the far North Atlantic are also very consistent, whereas declination anomalies deviate more notably. The pseudo-Thellier (PT) technique was applied along with more conventional palaeointensity proxies (NRM/ARM and NRM/kappa) to recover relative palaeointensity (RPI) estimates from Hole 1063A and Hole 983B. As expected, these proxies indicate that the field intensity generally dropped at both sites during the IB excursion, but also that the history of RPI from the two sites is different. VGPs from Site 1063 indicate that the field at this location experienced some stop-and-go behaviour between patches of intense vertical flux over North America and the tip of South America, areas which coincide fairly well with patches of preferred transitional VGP clustering from reversals and zones of high seismic velocity in the lower mantle. Changes in RPI at this location were generally gradual, possibly due to the proximity of these flux patches, and the first period of VGP-clustering over North America was accompanied by a conspicuous increase in RPI. VGPs from Site 983 track along a different path, and the associated RPI changes are very abrupt and completely synchronous with the onset and termination of the excursion. The differing VGP paths from Sites 1063 and 983 indicate that the global field structure during the IB excursion was not dominated by a single dipole.
Resumo:
Upper abyssal to lower bathyal benthic foraminifers from ODP Sites 689 (present water depth 2080 m) and 690 (present water depth 2941 m) on Maud Rise (eastern Weddell Sea, Antarctica) are reliable indicators of Maestrichtian through Neogene changes in the deep-water characteristics at high southern latitudes. Benthic foraminiferal faunas were divided into eight assemblages, with periods of faunal change at the early/late Maestrichtian boundary (69 Ma), at the early/late Paleocene boundary (62 Ma), in the latest Paleocene (57.5 Ma), in the middle early Eocene to late early Eocene (55-52 Ma), in the middle middle Eocene (46 Ma), in the late Eocene (38.5 Ma), and in the middle-late Miocene (14.9-11.5 Ma). These periods of faunal change may have occurred worldwide at the same time, although specific first and last appearances of deep-sea benthic foraminifers are commonly diachronous. There were minor faunal changes at the Cretaceous/Tertiary boundary (less than 14?7o of the species had last appearances at Site 689, less than 9% at Site 690). The most abrupt benthic foraminiferal faunal event occurred in the latest Paleocene, when the diversity dropped by 50% (more than 35% of species had last appearances) over a period of less than 25,000 years; after the extinction the diversity remained low for about 350,000 years. The highest diversities of the post-Paleocene occurred during the middle Eocene; from that time on the diversity decreased steadily at both sites. Data on faunal composition (percentage of infaunal versus epifaunal species) suggest that the waters bathing Maud Rise were well ventilated during the Maestrichtian through early Paleocene as well as during the latest Eocene through Recent. The waters appeared to be less well ventilated during the late Paleocene as well as the late middle through early late Eocene, with the least degree of ventilation during the latest Paleocene through early Eocene. The globally recognized extinction of deep-sea benthic foraminifers in the latest Paleocene may have been caused by a change in formational processes of the deep to intermediate waters of the oceans: from formation of deep waters by sinking at high latitudes to formation of deep to intermediate water of the oceans by evaporation at low latitudes. Benthic foraminiferal data (supported by carbon and oxygen isotopic data) suggest that there was a short period of intense formation of warm, salty deep water at the end of the Paleocene (with a duration of about 0.35 m.y.), and that less intense, even shorter episodes might have occurred during the late Paleocene and early Eocene. The faunal record from the Maud Rise sites agrees with published faunal and isotopic records, suggesting cooling of deep to intermediate waters in the middle through late Eocene.
Resumo:
We estimate tropical Atlantic upper ocean temperatures using oxygen isotope and Mg/Ca ratios in well-preserved planktonic foraminifera extracted from Albian through Santonian black shales recovered during Ocean Drilling Program Leg 207 (North Atlantic Demerara Rise). On the basis of a range of plausible assumptions regarding seawater composition at the time the data support temperatures between 33° and 42°C. In our low-resolution data set spanning ~84-100 Ma a local temperature maximum occurs in the late Turonian, and a possible minimum occurs in the mid to early late Cenomanian. The relation between single species foraminiferal d18O and Mg/Ca suggests that the ratio of magnesium to calcium in the Turonian-Coniacian ocean may have been lower than in the Albian-Cenomanian ocean, perhaps coincident with an ocean 87Sr/86Sr minimum. The carbon isotopic compositions of distinct marine algal biomarkers were measured in the same sediment samples. The d13C values of phytane, combined with foraminiferal d13C and inferred temperatures, were used to estimate atmospheric carbon dioxide concentrations through this interval. Estimates of atmospheric CO2 concentrations range between 600 and 2400 ppmv. Within the uncertainty in the various proxies, there is only a weak overall correspondence between higher (lower) tropical temperatures and more (less) atmospheric CO2. The GENESIS climate model underpredicts tropical Atlantic temperatures inferred from ODP Leg 207 foraminiferal d18O and Mg/Ca when we specify approximate CO2 concentrations estimated from the biomarker isotopes in the same samples. Possible errors in the temperature and CO2 estimates and possible deficiencies in the model are discussed. The potential for and effects of substantially higher atmospheric methane during Cretaceous anoxic events, perhaps derived from high fluxes from the oxygen minimum zone, are considered in light of recent work that shows a quadratic relation between increased methane flux and atmospheric CH4 concentrations. With 50 ppm CH4, GENESIS sea surface temperatures approximate the minimum upper ocean temperatures inferred from proxy data when CO2 concentrations specified to the model are near those inferred using the phytane d13C proxy. However, atmospheric CO2 concentrations of 3500 ppm or more are still required in the model in order to reproduce inferred maximum temperatures.
Resumo:
Ocean Drilling Program Leg 207 recovered thick sequences of Albian to Santonian organic-carbon-rich claystones at five drill-sites on the Demerara Rise in the western equatorial Atlantic Ocean. Dark-colored, finely laminated, Cenomanian-Santonian black shale sequences contain between 2% and 15% organic carbon and encompass Oceanic Anoxic Events 2 and 3. High Rock-Eval hydrogen indices signify that the bulk of the organic matter in these sequences is marine in origin. However, d13Corg values lie mostly between -30 per mil and -27 per mil, and TOC/TN ratios range from 15 to 42, which both mimic the source signatures of modern C3 land plants. The contradictions in organic matter source indicators provide important implications about the depositional conditions leading to the black shale accumulations. The low d13Corg values, which are actually common in mid-Cretaceous marine organic matter, are consequences of the greenhouse climate prevailing at that time and an associated accelerated hydrologic cycle. The elevated C/N ratios, which are also typical of black shales, indicate depressed organic matter degradation associated with low-oxygen conditions in the water column that favored preservation of carbon-rich forms of marine organic matter over nitrogen-rich components. Underlying the laminated Cenomanian-Santonian sequences are homogeneous, dark-colored, lower to middle Albian siltstones that contain between 0.2% and 9% organic carbon. The organic matter in these rocks is mostly marine in origin, but it occasionally includes large proportions of land-derived material.
Resumo:
Stable oxygen and carbon isotope measurements (d18O and d13C) of planktonic and benthic foraminifers were conducted to assess the temperature history and circulation patterns over Shatsky Rise during the Paleocene and Eocene. A record of Mg/Ca for benthic foraminifers was also constructed in order to better determine the relative influence of temperature, salinity, and/or ice volume upon the benthic d18O record. Isotopic analyses were carried out on several planktonic taxa (Acarinina, Morozovella, Globigerinatheka, Praemurica, and Subbotina) as well as several benthic taxa (Nuttalides, Oridorsalis, Cibicidoides, Gavelinella, and Lenticulina). Elemental analyses were restricted to three benthic taxa: Nuttalides, Oridorsalis, and Gavelinella. All specimens were derived from the composite sediment section recovered from Ocean Drilling Program Site 1209 on the Southern High of Shatsky Rise.
Resumo:
In this study we present a late Miocene - early Pliocene record of sixty-four zones with prominent losses in the magnetic susceptibility signal, taken on a sediment drift (ODP Site 1095) on the Pacific continental rise of the West Antarctic Peninsula. The zones are comparable in shape and magnitude and occur commonly at glacial-to-interglacial transitions. High resolution records of organic matter, magnetic susceptibility and clay mineral composition from early Pliocene intervals demonstrate that neither dilution effects nor provenance changes of the sediments have caused the magnetic susceptibility losses. Instead, reductive dissolution of magnetite under suboxic conditions seems to be the most likely explanation. We propose that during the deglaciation exceptionally high organic fluxes in combination with weak bottom water currents and prominent sediment draping diatom ooze layers produced temporary suboxic conditions in the uppermost sediments. It is remarkable that synsedimentary suboxic conditions can be observed in one of the best ventilated open ocean regions of the World.
Resumo:
The accumulation of wind blown (eolian) dust in deep-sea sediments reflects the aridity/humidity conditions of the continental region supplying the dust, as well as the "gustiness" of the climate system. Detailed studies of Pleistocene glacial-interglacial dust fluxes suggest changes in accumulation rates corresponding to orbital variations in solar insolation (Milankovitch cycles). While the orbital cycles found in sedimentary archives of the Pleistocene are intricately related to glacial growth and decay, similar global orbital signals recognized in deep-sea sediments of early Paleogene age, the last major greenhouse interval ~65-45 million years ago, could not have been linked to the waxing and waning of large ice sheets. Thus orbital signals recorded in early Paleogene sediments must reflect some other climate response to changes in solar insolation. To explore the potential connection between orbital forcing and the climate processes that control dust accumulation, we generated a high-resolution dust record for ~58 Myr old sediments from Shatsky Rise (ODP Site 1209, paleolatitude ~15°N-20°N). The dust accumulation data provide the first evidence of a correlation between dust flux to the deep sea and orbital cyclicity during the early Paleogene, indicating dust supply responded to insolation forcing during the last major interval of greenhouse climate. Furthermore, the relative amplitude of the dust flux response during the early Paleogene greenhouse was comparable to that during icehouse climates. Thus, subtle variations in solar insolation driven by changes in Earth's orbit about the Sun may have had a similar impact on climate during intervals of overall warmth as they did during glacial-interglacial states.
Resumo:
At Sites 689 and 690, drilled during ODP (Ocean Drilling Program) Leg 113 on the Maud Rise (southeast Weddell Sea), moderately to well preserved radiolarian assemblages were obtained from continuously recovered upper Oligocene and Neogene sequences. Based on radiolarian investigations, a biostratigraphic zonation for a time interval covering the late Oligocene to the middle Miocene is proposed. The radiolarian zonation comprises 10 zones. Five zones are new, and five zones previously defined by Chen (1975) were modified. The zones and the ranges of the nominate species are directly calibrated with a geomagnetic polarity record. This is the first attempt at a direct correlation of late Oligocene to middle Miocene radiolarian zones with the geomagnetic time scale. Six hiatuses were delineated in the studied upper Oligocene to middle Miocene sections. One major hiatus, spanning ca. 6 m.y., is between the upper Oligocene and the lower Miocene sequences. Another important hiatus separates the lower and middle Miocene sediments. As a base for the biostratigraphic investigations, a detailed taxonomic study of the recovered radiolarian taxa is achieved. Three new radiolarian species that occur in upper Oligocene and lower Miocene sediments are described (Cycladophora antiqua, Cyrtocapsella robusta, and Velicucullus altus).
Resumo:
Shatsky Rise, a medium-sized large igneous province in the west Central Pacific Ocean, has three main topographic highs that preserve a thick sedimentary record from Cretaceous through Cenozoic. During Ocean Drilling Program (ODP) Leg 198 to Shatsky Rise, a total of ~768 m of late Miocene-Holocene sediments was recovered from six sites. Sites 1207 and 1208 were drilled on the Northern and Central Highs, respectively, and yielded expanded late Miocene-Holocene sequences. Sites 1209, 1210, 1211, and 1212 were drilled on the Southern High and yielded shorter sequences of similar age. Clearly interpretable magnetic stratigraphies were obtained from all sites using the shipboard pass-through magnetometer. These results were augmented using discrete sample cubes (7 cm**3) collected shipboard and measured postcruise. Miocene age sediments are separated by a hiatus from Oligocene, Eocene, and Cretaceous age sediments beneath. An astrochronological age model was developed for the six sites based on cycles observed in reflectance data, measured shipboard. This age model is in good agreement with published astrochronological polarity chron ages in the 1 to 6 Ma interval.
Resumo:
Bioaccumulation of trace metals in carbonate shells of mussels and clams was investigated at seven hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, Rainbow, and Broken Spur) and the Eastern Pacific (9°N and 21°N at the East Pacific Rise and the southern trough of Guaymas Basin, Gulf of California). Mineralogical analysis showed that carbonate skeletons of mytilid mussel Bathymodiolus sp. and vesicomyid clam Calyptogena m. are composed mainly of calcite and aragonite, respectively. The first data were obtained for contents of a variety of chemical elements in bivalve carbonate shells from various hydrothermal vent sites. Analyses of chemical compositions (including Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg) of 35 shell samples and 14 water samples from mollusk biotopes revealed influences of environmental conditions and some biological parameters on bioaccumulation of metals. Bivalve shells from hydrothermal fields with black smokers are enriched in Fe and Mn by factor of 20-30 relative to the same species from the Menez Gwen low-temperature vent site. It was shown that essential elements (Fe, Mn, Ni, and Cu) more actively accumulated during early ontogeny of the shells. High enrichment factors of most metals (n x 100 - n x 10000) indicate efficient accumulation function of bivalve carbonate shells. Passive metal accumulation owing to adsorption on shell surfaces was estimated to be no higher than 50% of total amount and varied from 14% for Fe to 46% for Mn.
Resumo:
As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
Resumo:
Ocean acidity has increased by 30% since preindustrial times due to the uptake of anthropogenic CO2 and is projected to rise by another 120% before 2100 if CO2 emissions continue at current rates. Ocean acidification is expected to have wide-ranging impacts on marine life, including reduced growth and net erosion of coral reefs. Our present understanding of the impacts of ocean acidification on marine life, however, relies heavily on results from short-term CO2 perturbation studies. Here we present results from the first long-term CO2 perturbation study on the dominant reef-building cold-water coral Lophelia pertusa and relate them to results from a short-term study to compare the effect of exposure time on the coral's responses. Short-term (one week) high CO2 exposure resulted in a decline of calcification by 26-29% for a pH decrease of 0.1 units and net dissolution of calcium carbonate. In contrast, L. pertusa was capable to acclimate to acidified conditions in long-term (six months) incubations, leading to even slightly enhanced rates of calcification. Net growth is sustained even in waters sub-saturated with respect to aragonite. Acclimation to seawater acidification did not cause a measurable increase in metabolic rates. This is the first evidence of successful acclimation in a coral species to ocean acidification, emphasizing the general need for long-term incubations in ocean acidification research. To conclude on the sensitivity of cold-water coral reefs to future ocean acidification further ecophysiological studies are necessary which should also encompass the role of food availability and rising temperatures.
Resumo:
A 87Sr/86Sr isotope curve of the middle Eocene to Oligocene was produced from analysis of foraminifera in Ocean Drilling Program Hole 689B, Maud Rise, near the coast of Antarctica. Sediments from the hole are well preserved with no evidence of diagenetic alteration. The sequence is nearly complete from 46.3 to 24.8 Ma, with an average sampling interval of 166 kyr. Excellent magnetostratigraphy in Hole 689B allows calibration to the geomagnetic polarity time scale of Cande and Kent (1992). Marine strontium isotopic ratios were nearly stable from 46.3 to 35.5 Ma, averaging near 0.70773, after which they began to increase. A slow increase began after 40.4 Ma, rising at a rate of only about 8*10**-6/m.y. from base values of 0.707707. From 35.5 Ma to 24.8 Ma the average slope increased to 40*10**-6/m.y. The slope remained constant at least until 24.8 Ma, when the record becomes discontinuous owing to unconformities. We evaluate several possible controls on the marine strontium isotope curve that could have led to the observed growth in 87Sr/86Sr ratios near the Eocene/Oligocene boundary. Three mechanisms are considered, including the onset of Antarctic glaciation, increased mountain building in the Himalayan-Tibetan region, and decreased hydrothermal activity. None of the mechanisms alone seems to adequately explain the increased 87Sr/86Sr ratios during the Oligocene. Glaciation as a weathering agent was too episodic and probably began too late to explain the upturn in marine 87Sr/86Sr ratios. There is evidence that uplift in the Himalayan-Tibetan region began in the Miocene, much too late to control Oligocene strontium isotope ratios. Lastly, hydrothermal flux changes since the Eocene were apparently not great enough alone to account for the rise in marine 87Sr/86Sr ratios. We suggest that a combination of causes, such as decreased hydrothermal activity perhaps followed by increased glaciation and mountain building, might best explain the growth of the marine 87Sr/86Sr curve during the Oligocene.
Resumo:
The southernmost record of Maestrichtian pelagic carbonate sedimentation was recovered from ODP Leg 113 Holes 689B and 690C, drilled on the Maud Rise in the eastern Weddell Sea sector of the Southern Ocean (65°S). Well preserved and abundant planktonic foraminifers occur throughout Maestrichtian cores from both holes, providing a nearly complete biogeographic and biostratigraphic history of this region. Diversity is low compared to tropical and subtropical assemblages, with a maximum within sample diversity of 16 planktonic foraminifer species and a diversity total for the Maestrichtian of 24 species. The assemblages are dominated throughout by Heterohelix, Globigerinelloides, and a new species of Archaeoglobigerina, whereas keeled taxa are completely absent from the lower Maestrichtian and rare in the middle through upper Maestrichtian sediments. Three planktonic foraminifer species are described as new and are recognized as being endemic to the Austral Province. These include Archaeoglobigerina australis n. sp., Hedbergella sliteri n. sp., and Archaeoglobigerina mateola n. sp. The former two species were previously illustrated in reports on Late Cretaceous foraminifers from the Falkland Plateau and the northern Antarctic Peninsula. Two keeled and five non-keeled planktonic foraminifers, previously not found in high latitude Maestrichtian sediments, first appeared at the Maud Rise during the late early and late Maestrichtian. Correlation with their stratigraphic ranges in low latitude sequences shows that their first appearance datums are considerably younger at the Maud Rise than in the lower latitudes. The most likely explanation for this observation is that there was a warming in the south polar region during the late early and late Maestrichtian and a concomitant poleward migration of stenothermal taxa. However, oxygen isotopic paleotemperature results from Sites 689 and 690 (Barrera and Huber, 1990, doi:10.2973/odp.proc.sr.113.137.1990) show a long-term cooling trend throughout the Maestrichtian, indicating that other factors may have played a more important role than temperature in the distribution of Maestrichtian planktonic foraminifers. A new biostratigraphic scheme is proposed for the Antarctic because of the absence of thermophilic planktonic foraminifers used to identify existing low to middle latitude zones. The Globigerinelloides impensus Partial Range Zone is defined for the late Campanian-Maestrichtian, the Globotruncanita havanensis Partial Range Zone is redefined for the early to late early Maestrichtian, and the Abathomphalus mayaroensis Total Range Zone is recognized. Good quality magnetic polarity data obtained from both Maud Rise sites (Hamilton, 1990, doi:10.2973/odp.proc.sr.113.179.1990) enables magnetobiostratigraphic correlation of twelve foraminifer datums with the geomagnetic polarity time scale of Haq et al. (1987). The geochronology thus obtained is crucial for accurate cross-latitudinal correlation and interpretation of the paleoceanographic history of the Antarctic region during the Maestrichtian time period.
Resumo:
The benthic fauna was investigated during the expedition ANT-XXIV/2 (2007/08) in relation to oceanographic features, biogeochemical properties and sediment characteristics, as well as the benthic, pelagic and air-breathing fauna. The results document that Maud Rise (MR) differs distinctly from surrounding deep-sea basins investigated during previous Southern Ocean expeditions (ANDEEP 2002, 2005). Considering all taxa, the overall similarity between MR and adjacent stations was low (~20% Bray-Curtis-Similarity), and analyses of single taxa show obvious differences in species composition, abundances and densities. The composition and diversity of bivalves of MR are characterised by extremely high abundances of three species, especially the small sized Vesicomya spp. Exceptionally high gastropod abundance at MR is due to the single species Onoba subantarctica wilkesiana, a small brooder that may prey upon abundant benthic foraminiferas. The abundance and diversity of isopods also show that one family, Haplomunnidae, occurs with a surprisingly high number of individuals at MR while this family was not found at any of the 40 bathyal and abyssal ANDEEP stations. Similarly, polychaetes, especially the tube-dwelling, suspension-feeder fraction, are represented by species not found at the comparison stations. Sponges comprise almost exclusively small specimens in relatively high numbers, especially a few species of Polymastiidae. Water-column sampling from the surface to the seafloor, including observations of top predators, indicate the existence of a prospering pelagic food web. Local concentrations of top predators and zooplankton are associated with a rich ice-edge bloom located over the northern slope of MR. There the sea ice melts, which is probably accelerated by the advection of warm water at intermediate depth. Over the southern slope, high concentrations of Antarctic krill (Euphausia superba) occur under dense sea ice and attract Antarctic Minke Whales (Balaenoptera bonaerensis) and several seabird species. These findings suggest that biological prosperity over MR is related to both oceanographic and sea-ice processes. Downward transport of the organic matter produced in the pelagic realm may be more constant than elsewhere due to low lateral drift over MR.