953 resultados para Hemodynamics, Intermittent Positive-Pressure Ventilation
Resumo:
Objective: To investigate the effect of standing with assistance of the tilt table on ventilatory parameters and arterial blood gases in intensive care patients. Design: Consecutive sample. Setting: Tertiary referral hospital. Participants: Fifteen adult patients who had been intubated and mechanically ventilated for more than 5 days (3 subjects successfully weaned, 12 subjects being weaned). Intervention: Passive tilting to 70degrees from the horizontal for 5 minutes using a tilt table. Main Outcome Measures: Minute ventilation (VE), tidal volume (VT), respiratory rate, and arterial partial pressure of oxygen (Pao(2)) and carbon dioxide (Paco(2)). Results: Standing in the tilted position for 5 minutes produced significant increases in VE (P
Resumo:
Study objectives: Respiratory muscle weakness and decreased endurance have been demonstrated following mechanical ventilation. However, its relationship to the duration of mechanical ventilation is not known. The aim of this study was to assess respiratory muscle endurance and its relationship to the duration of mechanical ventilation. Design: Prospective study. Setting: Tertiary teaching hospital ICU. Patients: Twenty subjects were recruited for the study who had received mechanical ventilation for a 48 h and had been discharged from the ICU. Measurements: FEV1 FVC, and maximal inspiratory pressure (Pimax) at functional residual capacity were recorded. The Pimax attained following resisted inspiration at 30% of the initial Pimax for 2 min was recorded, and the fatigue resistance index (FRI) [Pimax final/Pimax initial] was calculated. The duration of ICU length of stay (ICULOS), duration of mechanical ventilation (MVD), duration of weaning (WD), and Charlson comorbidities score (CCS) were also recorded. Relationships between fatigue and other parameters were analyzed using the Spearman correlations (p). Results: Subjects were admitted to the ICU for a mean duration of 7.7 days (SD, 3.7 days) and required mechanical ventilation for a mean duration of 4.6 days (SD, 2.5 days). The mean FRI was 0.88 (SD, 0.13), indicating a 12% fall in Pimax, and was negatively correlated with MVD (r = -0.65; p = 0.007). No correlations were found between the FRI and FEV1, FVC, ICULOS, WD, or CCS. Conclusions: Patients who had received mechanical ventilation for > 48 h have reduced inspiratory muscle endurance that worsens with the duration of mechanical ventilation and is present following successful weaning. These data suggest that patients needing prolonged mechanical ventilation are at risk of respiratory muscle fatigue and may benefit from respiratory muscle training.
Resumo:
In recognition of a central role of the kidney in long-term blood pressure control, we undertook an in-depth analysis of the relationship between blood pressure and kidney damage caused by environmental exposure to the common pollutants cadmium and lead. The subjects were 200 healthy Thais, 16 and 60 years of age (100 female non-smokers, 53 male non-smokers, and 47 male smokers). None of these subjects had been exposed to Cd or Pb in the workplace and their urinary Cd concentrations ranged from 0.4 to 37 nM, whereas their urinary Pb concentrations ranged from 0.1 to 30 nM. The prevalence of high blood pressure was 2%, 8% and 19%, respectively in subjects with low, average and high Cd-burden (linear trend chi(2) = 6.4, P = 0.01). Multiple regression analysis revealed a significant positive association between Cd-burden and blood pressure in male nonsmokers (adjusted beta = 0.31, P = 0.02) and an inverse association between blood pressure and urinary Pb excretion rate in male smokers (adjusted beta = -0.38, P = 0.005). Associations between Cd-burden and nephropathies were evidenced by increases in urinary excretion of beta 2-microglobutin (P = 0.02) and N-acetyl-beta-D-glucosaminidase (P = 0.005) in subjects with high Cd-burden, compared with the subjects with average Cd-burden. In addition, an association between Cd-related nephropathy and high blood pressure was evidenced by a 20% increase in the prevalence of high blood pressure in people with NAG-uria (linear trend chi(2) = 4.3, P = 0.04). Our present study provides first evidence for a possible link between renal tubular damage and dysfunction caused by environmental Cd exposure and increased risk of high blood pressure. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We report here a validated method for the quantification of a new immunosuppressant drug FTY720, using HPLC-tandem mass spectrometry. Whole blood samples (500 mu l) were subjected to liquid-liquid extraction, in the presence of an internal standard (Y-32919). Mass spectrometric detection was by selected reaction monitoring with an atmospheric pressure chemical ionization source in positive ionization mode (FTY720: m/z 308.3 -> 255.3). The assay was linear from 0.2 to 25 mu g/l (r(2) > 0.997, n = 5). The inter- and intra-day analytical recovery and imprecision for quality control samples (0.5, 7 and 15 mu g/l) were 95.8-103.2 and < 5.5%, respectively. At the lower limit of quantification (0.2 mu g/l) the interand intra-day analytical recovery was 99.0-102.8% with imprecision of < 7.6% (n = 5). The assay had a mean relative recovery of 100.5 +/- 5.8% (n = 15). Extracted samples were stable for 16 h. IFTY720 quality control samples were stable at room temperature for 16 h at 4 degrees C for at least 8 days and when taken through at least three freeze-thaw cycles. In conclusion, the method described displays analytical performance characteristics that are suitable for pharmacokinetic studies in humans. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A 52-year-old male with idiopathic hypereosinophilic syndrome (HES) was transferred to our institution following the development of acute respiratory failure and shock. He had previously undergone tricuspid valve replacement with bioprosthetic valves on two occasions: the initial surgery for severe native tricuspid valve stenosis and the redo surgery for severe prosthetic valve stenosis and regurgitation. Conventional imaging assessment using transoesophageal echocardiography was suboptimal and comprehensive assessment of prosthetic valve function was aided by the use of intracardiac echocardiography (ICE). ICE provided high quality 2D imaging of the prosthesis demonstrating thrombus-like material coating the inner surfaces of the prosthetic valve stents effectively forming a tunnel-like obstruction. Unusual hemodynamics secondary to severe tricuspid stenosis were demonstrated by CW Doppler with intermittent signal fusion resulting from blunted respiratory variation in the markedly elevated right atrial pressure relative to right ventricular pressure. Successful balloon valvuloplasty was performed with ICE proving highly valuable in guiding balloon position as well as monitoring the efficacy of the subsequent inflations.
Resumo:
The most commonly observed severe lung injuries in early life are the respiratory distress syndrome in premature infants and the acute respiratory distress syndrome in children. Both diseases are characterised by alveolar instability, fluid filled airspace and some degree of airway obstruction. In the acute phase, collapsed alveoli can be reopened with positive end-expiratory pressure and lung recruitment. New insight into the physiology of lung recruitment suggests that the shape of the pressure–volume curve is defined by the change in rate of alveolar opening and closing. Reduced lung volumes and severe ventilation maldistribution are found in the acute phase but may persist during childhood. Any severe lung injury in this early phase of life can cause significant structural and functional damage to the developing lung. Follow-up studies of children with chronic lung disease have shown that the functional abnormalities will improve but may still be present in later childhood.
Resumo:
Caudal block results in a motor blockade that can reduce abdominal wall tension. This could interact with the balance between chest wall and lung recoil pressure and tension of the diaphragm, which determines the static resting volume of the lung. On this rationale, we hypothesised that caudal block causes an increase in functional residual capacity and ventilation distribution in anaesthetised children. Fifty-two healthy children (15-30 kg, 3-8 years of age) undergoing elective surgery with general anaesthesia and caudal block were studied and randomly allocated to two groups: caudal block or control. Following induction of anaesthesia, the first measurement was obtained in the supine position (baseline). All children were then turned to the left lateral position and patients in the caudal block group received a caudal block with bupivacaine. No intervention took place in the control group. After 15 nun in the supine position, the second assessment was performed. Functional residual capacity and parameters of ventilation distribution were calculated by a blinded reviewer. Functional residual capacity was similar at baseline in both groups. In the caudal block group, the capacity increased significantly (p < 0.0001) following caudal block, while in the control group, it remained unchanged. In both groups, parameters of ventilation distribution were consistent with the changes in functional residual capacity. Caudal block resulted in a significant increase in functional residual capacity and improvement in ventilation homogeneity in comparison with the control group. This indicates that caudal block might have a beneficial effect on gas exchange in anaesthetised, spontaneously breathing preschool-aged children with healthy lungs.
Resumo:
In this paper we discuss the first of a series of experiments evaluating earcons for critical care environments. We examine peoples’ ability to monitor earcons conveying systolic and diastolic blood pressure while conducting a distractor task. The results showed that when a beacon is present prior to the earcon, participants’ judgment of pitch and duration information improved. The results of the study also indicated presence of historical information in the earcon may interfere with participants’ judgments. However, since participants felt more confident in their recall of previous values when the historical information was present, the results may reflect insufficient training.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the "hydrogen economy" faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH 3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. ^ Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. ^ Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn2 1 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.^
Resumo:
A comprehensive forensic investigation of sensitive ecosystems in the Everglades Area is presented. Assessing the background levels of contamination in these ecosystems represents a vital resource to build up forensic evidence required to enforce future environmental crimes within the studied areas. This investigation presents the development and validation of a fractionation and isolation method for two families of herbicides commonly applied in the vicinity of the study area, including phenoxy acids like 2,4-D, MCPA, and silvex; as well as the most common triazine-based herbicides like atrazine, prometyne, simazine and related metabolites like DIA and DEA. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used to isolate the analytes from abiotic matrices containing large amounts of organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-), and Chemical Ionization in the positive mode (APCI+) were used to perform the characterization of the herbicides of interest.
Resumo:
The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, ``is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence of steady aerodynamic loading and LPT flutter. Many pressing topics influencing LPT flutter including shocks, their nonlinearity, and three-dimensionality are also addressed along the way. The work is concluded by introducing a useful preliminary design tool that can estimate within seconds the entire aerodynamic damping versus nodal diameter curve for a given three-dimensional cascade.
Resumo:
Computational fluid dynamic (CFD) studies of blood flow in cerebrovascular aneurysms have potential to improve patient treatment planning by enabling clinicians and engineers to model patient-specific geometries and compute predictors and risks prior to neurovascular intervention. However, the use of patient-specific computational models in clinical settings is unfeasible due to their complexity, computationally intensive and time-consuming nature. An important factor contributing to this challenge is the choice of outlet boundary conditions, which often involves a trade-off between physiological accuracy, patient-specificity, simplicity and speed. In this study, we analyze how resistance and impedance outlet boundary conditions affect blood flow velocities, wall shear stresses and pressure distributions in a patient-specific model of a cerebrovascular aneurysm. We also use geometrical manipulation techniques to obtain a model of the patient’s vasculature prior to aneurysm development, and study how forces and stresses may have been involved in the initiation of aneurysm growth. Our CFD results show that the nature of the prescribed outlet boundary conditions is not as important as the relative distributions of blood flow through each outlet branch. As long as the appropriate parameters are chosen to keep these flow distributions consistent with physiology, resistance boundary conditions, which are simpler, easier to use and more practical than their impedance counterparts, are sufficient to study aneurysm pathophysiology, since they predict very similar wall shear stresses, time-averaged wall shear stresses, time-averaged pressures, and blood flow patterns and velocities. The only situations where the use of impedance boundary conditions should be prioritized is if pressure waveforms are being analyzed, or if local pressure distributions are being evaluated at specific time points, especially at peak systole, where the use of resistance boundary conditions leads to unnaturally large pressure pulses. In addition, we show that in this specific patient, the region of the blood vessel where the neck of the aneurysm developed was subject to abnormally high wall shear stresses, and that regions surrounding blebs on the aneurysmal surface were subject to low, oscillatory wall shear stresses. Computational models using resistance outlet boundary conditions may be suitable to study patient-specific aneurysm progression in a clinical setting, although several other challenges must be addressed before these tools can be applied clinically.