995 resultados para Hamiltonian stationary surfaces
Resumo:
Some of the calculated parameters show a maximum value for specimens heat-treated at about 100°C. The tensile strength is, for instance, substantially higher for specimens shock-heated at 100°C than for non-heated ones. Another striking feature is the initial decrease of the diameter observed in specimens heat-treated at 600°C when loaded in uniaxial compression. Both optical microscopy and DSA experiments reveal a large increase in microcracking when the heat-treatment temperature exceeds 300°C.
Resumo:
Pulse fishing may be a global optimal strategy in multicohort fisheries. In this article we compare the pulse fishing solutions obtained by using global numerical methods with the analytical stationary optimal solution. This allows us to quantify the potential benefits associated with the use of periodic fishing in the Northern Stock of hake. Results show that: first, management plans based exclusively on traditional reference targets as Fmsy may drive fishery economic results far from the optimal; second, global optimal solutions would imply, in a cyclical manner, the closure of the fishery for some periods and third, second best stationary policies with stable employment only reduce optimal present value of discounted profit in a 2%.
Resumo:
In a context where demand for the services of a durable good changes over time, and this change may be uncertain, the paper shows that social welfare may be higher when the monopolist seller can commit to any future price level she wishes than when she cannot. Moreover, the equilibrium under a monopolist with commitment power may Pareto-dominate the equilibrium under a monopolist without commitment ability. These results affect the desired regulation of a durable goods monopolist in this context.
Resumo:
This is a student paper done for a University of California Berkeley Zoology class. Since UCB didn't have its own marine lab at the time, it rented space at Hopkins Marine Station where this work was done. Cadet Hand earned his Ph.D. from Berkeley and went on to become Director of the Bodega Marine Laboratory. Donald Putnam Abbott also earned his Ph.D. from Berkeley and later became a Stanford professor at Hopkins Marine Station. (PDF contains 26 pages)
Resumo:
A new method is described and evaluated for visually sampling reef fish community structure in environments with highly diverse and abundant reef fish populations. The method is based on censuses of reef fishes taken within a cylinder of 7.5 m radius by a diver at randomly selected, stationary points. The method provides quantitative data on frequency of occnrrence, fish length, abundance, and community composition, and is simple, fast, objective, and repeatable. Species are accumulated rapidly for listing purposes, and large numbers of samples are easily obtained for statistical treatment. The method provides an alternative to traditional visual sampling methods. Observations showed that there were no significant differences in total numbers of species or individuals censused when visibility ranged between 8 and 30 m. The reefs and habitats sampled were significant sources of variation in number of species and individuals censused, but the diver was not a significant influence. Community similarity indices were influenced significantly by the specific sampling site and the reef sampled, but were not significantly affected by the habitat or diver (PDF file contains 21 pages.)
Resumo:
Recent experiments have found that slip length could be as large as on the order of 1 mu m for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths, which cannot be obtained by molecular dynamics simulation alone.
Resumo:
A scale-similarity model for Lagrangian two-point, two-time velocity correlations LVCs in isotropic turbulence is developed from the Kolmogorov similarity hypothesis. It is a second approximation to the isocontours of LVCs, while the Smith-Hay model is only a first approximation. This model expresses the LVC by its space correlation and a dispersion velocity. We derive the analytical expression for the dispersion velocity from the Navier-Stokes equations using the quasinormality assumption. The dispersion velocity is dependent on enstrophy spectra and shown to be smaller than the sweeping velocity for the Eulerian velocity correlation. Therefore, the Lagrangian decorrelation process is slower than the Eulerian decorrelation process. The data from direct numerical simulation of isotropic turbulence support the scale-similarity model: the LVCs for different space separations collapse into a universal form when plotted against the separation axis defined by the model.