950 resultados para HYDROGEN PEROXIDE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peroxiredoxins are known to interact with hydrogen peroxide (H2O2) and to participate in oxidant scavenging, redox signal transduction, and heat-shock responses. The two-cysteine peroxiredoxin Tpx1 of Schizosaccharomyces pombe has been characterized as the H2O2 sensor that transduces the redox signal to the transcription factor Pap1. Here, we show that Tpx1 is essential for aerobic, but not anaerobic, growth. We demonstrate that Tpx1 has an exquisite sensitivity for its substrate, which explains its participation in maintaining low steady-state levels of H2O2. We also show in vitro and in vivo that inactivation of Tpx1 by oxidation of its catalytic cysteine to a sulfinic acid is always preceded by a sulfinic acid form in a covalently linked dimer, which may be important for understanding the kinetics of Tpx1 inactivation. Furthermore, we provide evidence that a strain expressing Tpx1.C169S, lacking the resolving cysteine, can sustain aerobic growth, and we show that small reductants can modulate the activity of the mutant protein in vitro, probably by supplying a thiol group to substitute for cysteine 169.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this pilot project was to evaluate the feasibility of assessing the deposited particle dose in the lungs by applying the dynamic light scattering-based methodology in exhaled breath condensateur (EBC). In parallel, we developed and validated two analytical methods allowing the determination of inflammatory (hydrogen peroxide - H2O2) and lipoperoxidation (malondialdehyde - MDA) biomarkers in exhaled breath condensate. Finally, these methods were used to assess the particle dose and consecutive inflammatory effect in healthy nonsmoker subjects exposed to environmental tobacco smoke in controlled situations was done.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT A detailed protocol for chemical clearing of bee specimens is presented. Dry specimens as well as those preserved in liquid media can be cleared using this protocol. The procedure consists of a combined use of alkaline solution (KOH or NaOH) and hydrogen peroxide (H2O2), followed by the boiling of the cleared specimens in 60–70% EtOH. Clearing is particularly useful for internal skeletal morphological research. This procedure allows for efficient study of internal projections of the exoskeleton (e.g., apodemes, furcae, phragmata, tentoria, internal ridges and sulci), but this process makes external features of the integument, as some sutures and sulci, readily available for observation as well. Upon completion of the chemical clearing process the specimens can be stored in glycerin. This procedure was developed and evaluated for the preparation of bees and other Apoidea, but modifications for use with other insect taxa should be straightforward after some experimentation on variations of timing of steps, concentration of solutions, temperatures, and the necessity of a given step. Comments on the long-term storage, morphological examination, and photodocumentation of cleared specimens are also provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An accurate assessment of the rising ambient temperature by plant cells is crucial for the timely activation of various molecular defences before the appearance of heat damage. Recent findings have allowed a better understanding of the early cellular events that take place at the beginning of mild temperature rise, to timely express heat-shock proteins (HSPs), which will, in turn, confer thermotolerance to the plant. Here, we discuss the key components of the heat signalling pathway and suggest a model in which a primary sensory role is carried out by the plasma membrane and various secondary messengers, such as Ca(2+) ions, nitric oxide (NO) and hydrogen peroxide (H(2) O(2) ). We also describe the role of downstream components, such as calmodulins, mitogen-activated protein kinases and Hsp90, in the activation of heat-shock transcription factors (HSFs). The data gathered for land plants suggest that, following temperature elevation, the heat signal is probably transduced by several pathways that will, however, coalesce into the final activation of HSFs, the expression of HSPs and the onset of cellular thermotolerance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge of the soil physical properties, including the clay content, is of utmost importance for agriculture. The behavior of apparently similar soils can differ in intrinsic characteristics determined by different formation processes and nature of the parent material. The purpose of this study was to assess the efficacy of separate or combined pre-treatments, dispersion methods and chemical dispersant agents to determine clay in some soil classes, selected according to their mineralogy. Two Brazilian Oxisols, two Alfisols and one Mollisol with contrasting mineralogy were selected. Different treatments were applied: chemical substances as dispersants (lithium hydroxide, sodium hydroxide, and hexametaphosphate); pre-treatment with dithionite, ammonium oxalate, and hydrogen peroxide to eliminate organic matter; and coarse sand as abrasive and ultrasound, to test their mechanical action. The conclusion was drawn that different treatments must be applied to determine clay, in view of the soil mineralogy. Lithium hydroxide was not efficient to disperse low-CEC electropositive soils and very efficient in dispersing high-CEC electronegative soils. The use of coarse sand as an abrasive increased the clay content of all soils and in all treatments in which dispersion occurred, with or without the use of chemical dispersants. The efficiency of coarse sand is not the same for all soil classes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precise localization of extracellular matrix and cell wall components is of critical importance for multicellular organisms. Lignin is a major cell wall modification that often forms intricate subcellular patterns that are central to cellular function. Yet the mechanisms of lignin polymerization and the subcellular precision of its formation remain enigmatic. Here, we show that the Casparian strip, a lignin-based, paracellular diffusion barrier in plants, forms as a precise, median ring by the concerted action of a specific, localized NADPH oxidase, brought into proximity of localized peroxidases through the action of Casparian strip domain proteins (CASPs). Our findings in Arabidopsis provide a simple mechanistic model of how plant cells regulate lignin formation with subcellular precision. We speculate that scaffolding of NADPH oxidases to the downstream targets of the reactive oxygen species (ROS) that they produce might be a widespread mechanism to ensure specificity and subcellular precision of ROS action within the extracellular matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Small RNAs (sRNAs) are widespread among bacteria and have diverse regulatory roles. Most of these sRNAs have been discovered by a combination of computational and experimental methods. In Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium and opportunistic human pathogen, the GacS/GacA two-component system positively controls the transcription of two sRNAs (RsmY, RsmZ), which are crucial for the expression of genes involved in virulence. In the biocontrol bacterium Pseudomonas fluorescens CHA0, three GacA-controlled sRNAs (RsmX, RsmY, RsmZ) regulate the response to oxidative stress and the expression of extracellular products including biocontrol factors. RsmX, RsmY and RsmZ contain multiple unpaired GGA motifs and control the expression of target mRNAs at the translational level, by sequestration of translational repressor proteins of the RsmA family. RESULTS: A combined computational and experimental approach enabled us to identify 14 intergenic regions encoding sRNAs in P. aeruginosa. Eight of these regions encode newly identified sRNAs. The intergenic region 1698 was found to specify a novel GacA-controlled sRNA termed RgsA. GacA regulation appeared to be indirect. In P. fluorescens CHA0, an RgsA homolog was also expressed under positive GacA control. This 120-nt sRNA contained a single GGA motif and, unlike RsmX, RsmY and RsmZ, was unable to derepress translation of the hcnA gene (involved in the biosynthesis of the biocontrol factor hydrogen cyanide), but contributed to the bacterium's resistance to hydrogen peroxide. In both P. aeruginosa and P. fluorescens the stress sigma factor RpoS was essential for RgsA expression. CONCLUSION: The discovery of an additional sRNA expressed under GacA control in two Pseudomonas species highlights the complexity of this global regulatory system and suggests that the mode of action of GacA control may be more elaborate than previously suspected. Our results also confirm that several GGA motifs are required in an sRNA for sequestration of the RsmA protein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A full validation of inorganic arsenic (iAs), methylarsonic acid (MA), and dimethyl arsinic acid (DMA) in several types of rice and rice-based infant cereals is reported. The analytical method was developed and validated in two laboratories. The extraction of the As species was performed using nitric acid 0.2 % and hydrogen peroxide 1 %, and the coupled system liquid chromatography-inductively coupled plasma-mass spectrometry (LCICP-MS) was used for speciation measurements. Detection limit (DL), quantification limit, linearity, precision, trueness, accuracy, selectivity, as well as expanded uncertainty for iAs, MA, and DMA were established. The certified reference materials (CRMs) (NMIJ 7503a, NCS ZC73008, NIST SRM 1568a) were used to check the accuracy. The method was shown to be satisfactory in two proficiency tests (PTs). The broad applicability of the method is shown from the results of analysis of 29 samples including several types of rice, rice products, and infant cereal products. Total As ranged from 40.1 to 323.7 μg As kg1. From the speciation results, iAs was predominant, and DMA was detected in some samples while MA was not detected in any sample.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The alternatives used for minimizing the usage of chlorine dioxide in bleaching sequences included a hot acid hydrolysis (Ahot) stage, the use of hot chlorine dioxide (Dhot) and ozone stages at medium consistency and high consistency (Zmc and Zhc), in addition to stages with atmospheric hydrogen peroxide (P) and pressurized hydrogen peroxide (PO). The results were interpreted based on the cost of the chemical products, bleaching process yields and on minimizing the environmental impact of the bleaching process. In spite of some process restrictions, high ISO brightness levels were kept around 90 % brightness. Additionally, the inclusion of stages like acid hydrolysis, pressurized peroxide and ozone in the bleaching sequences provided an increase in operating flexibility, aimed at reducing environmental impact (ECF Light). The Dhot(EOP)D(PO) sequence presented lower operating cost for ISO brightness above 92 %. However, this kind of sequence was not allowed for closing the wastewater circuit, even partially. For ISO brightness level around 91%, the AhotZhcDP sequence presented a lower operating cost than the others

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria. Methodology/Principal Findings: We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells. Conclusion/Significance: Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Health assessment and medical surveillance of workers exposed to combustion nanoparticles are challenging. The aim was to evaluate the feasibility of using exhaled breath condensate (EBC) from healthy volunteers for (1) assessing the lung deposited dose of combustion nanoparticles and (2) determining the resulting oxidative stress by measuring hydrogen peroxide (H2O2) and malondialdehyde (MDA). Methods: Fifteen healthy nonsmoker volunteers were exposed to three different levels of sidestream cigarette smoke under controlled conditions. EBC was repeatedly collected before, during, and 1 and 2 hr after exposure. Exposure variables were measured by direct reading instruments and by active sampling. The different EBC samples were analyzed for particle number concentration (light-scattering-based method) and for selected compounds considered oxidative stress markers. Results: Subjects were exposed to an average airborne concentration up to 4.3×10(5) particles/cm(3) (average geometric size ∼60-80 nm). Up to 10×10(8) particles/mL could be measured in the collected EBC with a broad size distribution (50(th) percentile ∼160 nm), but these biological concentrations were not related to the exposure level of cigarette smoke particles. Although H2O2 and MDA concentrations in EBC increased during exposure, only H2O2 showed a transient normalization 1 hr after exposure and increased afterward. In contrast, MDA levels stayed elevated during the 2 hr post exposure. Conclusions: The use of diffusion light scattering for particle counting proved to be sufficiently sensitive to detect objects in EBC, but lacked the specificity for carbonaceous tobacco smoke particles. Our results suggest two phases of oxidation markers in EBC: first, the initial deposition of particles and gases in the lung lining liquid, and later the start of oxidative stress with associated cell membrane damage. Future studies should extend the follow-up time and should remove gases or particles from the air to allow differentiation between the different sources of H2O2 and MDA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässä tutkimuksessa tarkastellaan kahden yleisen, veden ympäristökuormitusta aiheuttavan kemikaaliryhmän, ligniinin ja humusaineiden, fotokatalyyttistahapetusta (photocatalytic oxidation, PCO) vesiliuoksessa. Fotokatalyyttina käytettiin titaanidioksidia, jota säteilytettiin ultraviolettivalolla. Työssä selvitettiin useiden eri olosuhdeparametrien vaikutusta fotokatalyysiin. Tutkittavia parametreja olivat mm. kontaminanttien alkukonsentraatio, pH, vetyperoksidilisäys, rauta-ionien lisäys, fotokatalyysimenetelmä, fotokatalyytin pintakonsentraatioja titaanidioksidin määrä lasisissa mikropartikkeleissa. Ultraviolettivalon lähteinä käytettiin sekä keinovaloa että auringonvaloa. Katalyytin kantoaineena käytettiin huokoisia lasisia mikropartikkeleita, joiden pintaan kiinnittynyt titaanidioksidi pystyi hyvin vähentämään kontaminanttien määrää vedessä. Fotokatalyysin tehokkuus kasvoi humusaine- ja ligniinikonsentraatioiden kasvaessa. Korkeimmat hapetustehokkuudet kumallakin kontaminantilla saavutettiin neutraaleissa jalievästi emäksisissä olosuhteissa huolimatta siitä, että paras adsorboituminen tapahtui happamissa olosuhteissa. Tämän perusteella voidaan olettaa, että humusaineiden ja ligniinin hapetus tapahtuu pääosin radikaalimekanismilla. Vetyperoksidin lisääminen humusaineliuokseen lisäsi hapettumisnopeutta, vaikka näennäinen hapetustehokkuus ei muuttunut. Tämän perusteella vetyperoksidi hapetti myös humusaineita referenssinäytteessä. Ligniinin fotokatalyyttinen hapettuminen parani vetyperoksidilisäyksellä happamissa olosuhteissa johtuen lisääntyneestä OH-radikaalien muodostumisesta. Ligniini ei hapettunut vetyperoksidilla, jos fotokatalyyttiä ei¿ollut läsnä. Rauta-ionit eivät lisänneet humushappojen fotokatalyyttistähapettumista, mutta Fe2+-ionien lisäys aina konsentraatioon 0.05 mM johti ligniinin hapettumistehokkuuden voimakkaaseen kasvuun. Rauta-ionikonsentraation kasvattaminen edelleen johti ligniinin hapetustehokkuuden alenemiseen.