985 resultados para HUMAN SECRETORY PHOSPHOLIPASE-A2


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To assess the expression and regulation of antilipoprotein D (ApoD) and antilipoprotein E (ApoE) in human endometrium. STUDY DESIGN Endometrial biopsies from healthy, regularly cycling women were collected during the late proliferative and mid-secretory phase. mRNA gene expression of ApoD and ApoE was determined using real-time PCR in whole tissue, in isolated stromal (ESC), epithelial (EEC) and CD45(+) leukocytes (EIC), as well as after hormonal stimulation of ESC and EEC in vitro. Protein expression was analyzed using immunohistochemistry. RESULTS ApoD and ApoE mRNA was expressed in all cell types examined. A rise in ApoD mRNA expression was seen in whole endometrium, ESC, and EEC in the secretory phase, as well as after hormonal stimulation of ESC and EEC in vitro. ApoE mRNA was significantly upregulated in whole endometrium of secretory phase biopsies, while its expression was not altered by progesterone in vitro. Immunohistochemistry of whole endometrial tissue localized ApoD mainly in ESC and EEC. While ApoE was localized slightly in ESC, it was particularly noted on the surface of secretory phase endothelial cells. CONCLUSION We demonstrate for the first time the cell-type and cycle dependent expression of ApoD and ApoE within human endometrium, suggesting their role in endometrial modulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2) and cathepsin L-1 (recCL1), were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA) for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG) conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES) from adult stage liver flukes was assessed by receiver operator characteristic (ROC) analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20), patients with other parasitic infections (n=87) and patients with malignancies (n=121). The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy) employing the threshold (cut-off) to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Androgens are essential for sexual development and reproduction. However, androgen regulation in health and disease is poorly understood. We showed that human adrenocortical H295R cells grown under starvation conditions acquire a hyperandrogenic steroid profile with changes in steroid metabolizing enzymes HSD3B2 and CYP17A1 essential for androgen production. Here we studied the regulatory mechanisms underlying androgen production in starved H295R cells. Microarray expression profiling of normal versus starved H295R cells revealed fourteen differentially expressed genes; HSD3B2, HSD3B1, CYP21A2, RARB, ASS1, CFI, ASCL1 and ENC1 play a role in steroid and energy metabolism and ANGPTL1, PLK2, DUSP6, DUSP10 and FREM2 are involved in signal transduction. We discovered two new gene networks around RARB and ANGPTL1, and show how they regulate androgen biosynthesis. Transcription factor RARB stimulated the promoters of genes involved in androgen production (StAR, CYP17A1 and HSD3B2) and enhanced androstenedione production. For HSD3B2 regulation RARB worked in cooperation with Nur77. Secretory protein ANGPTL1 modulated CYP17A1 and DUSP6 expression by inducing ERK1/2 phosphorylation. By contrast, our studies revealed no evidence for hormones or cell cycle involvement in regulating androgen biosynthesis. In summary, these studies establish a firm role for RARB and ANGPTL1 in the regulation of androgen production in H295R cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human a2 -macroglobulin ( a2 M; homotetramer, Mr 720 kDa) is an essential scavenger of proteinases in the serum. Each of its four subunits has a ‘bait region’, with cleavage sequences for almost all endo-proteinases, an unusual thiol ester moiety and a receptor-binding domain (RBD). Bait region cleavage in native a2 M ( a2 M-N) by a proteinase results in rapid thiol ester breakage, with a large-scale structural transformation, in which a2 M uniquely entraps the proteinase in a cage-like structure and exposes receptor-binding domains for rapid endocytosis. Transformed a2 M ( a2 M-TR) contains up to two proteinases, which remain active to small substrates. 3-D electron microscopy is optimally suited to study this unusual structural change at resolutions near (1/30) Å−1. ^ The structural importance of the thiol esters was demonstrated by a genetically-engineered a2 M, with the cysteines involved in thiol ester formation mutated to serines, which appeared structurally homologous to a2 M-TR. This demonstrates that the four highly labile thiol esters alone maintain the a2 M-N structure, while the ‘closed trap’ formed by a2 M-TR is a more stable structural form. ^ Half-transformed a2 M ( a2 M-HT), with cleaved bait regions and thiol esters in only two of its four subunits, provides an important structural link between a2 M-N and a2 M-TR. A comparison with a2 M-N showed the two proteinase-entrapping domains were above and below the plane bisecting the long axis. Both a2 M-N and a2 M-TR consist of two dense, oppositely twisted strands with significant interconnections, indicating that the structural change involves a rotation of these strands. In a2 M-HT these strands were partially untwisted with large central openings, revealing the manner in which the proteinase enters the internal cavity of a2 M. ^ In reconstructions of a2 M-N, a2 M-HT and a2 M-TR labeled with a monoclonal Fab, the Fabs were located on distal ends of each constitutive strand, demonstrating an anti-parallel arrangement of the subunits. Separation between the top and bottom pairs of Fabs was nearly the same on all structures, but the pairs were rotated about the long axis. Taken together, these results indicate that upon proteinase cleavage the two strands in a2 M-N separate. The proteinase enters the structure, while the strands re-twist to encage it. In a2 M-TR, which displays receptor-binding arms, more than two subunits are transformed as strands in the transformed half of a2 M-HT were not separated. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae Sec7 protein (ySec7p), which is an important component of the yeast secretory pathway, contains a sequence of ≈200 amino acids referred to as a Sec7 domain. Similar Sec7 domain sequences have been recognized in several guanine nucleotide-exchange proteins (GEPs) for ADP ribosylation factors (ARFs). ARFs are ≈20-kDa GTPases that regulate intracellular vesicular membrane trafficking and activate phospholipase D. GEPs activate ARFs by catalyzing the replacement of bound GDP with GTP. We, therefore, undertook to determine whether a Sec7 domain itself could catalyze nucleotide exchange on ARF and found that it exhibited brefeldin A (BFA)-inhibitable ARF GEP activity. BFA is known to inhibit ARF GEP activity in Golgi membranes, thereby causing reversible apparent dissolution of the Golgi complex in many cells. The His6-tagged Sec7 domain from ySec7p (rySec7d) synthesized in Escherichia coli enhanced binding of guanosine 5′-[γ-[35S]thio]triphosphate by recombinant yeast ARF1 (ryARF1) and ryARF2 but not by ryARF3. The effects of rySec7d on ryARF2 were inhibited by BFA in a concentration-dependent manner but not by inactive analogues of BFA (B-17, B-27, and B-36). rySec7d also promoted BFA-sensitive guanosine 5′-[γ-thio]triphosphate binding by nonmyristoylated recombinant human ARF1 (rhARF1), rhARF5, and rhARF6, although the effect on rhARF6 was very small. These results are consistent with the conclusion that the yeast Sec7 domain itself contains the elements necessary for ARF GEP activity and its inhibition by BFA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast phosphatidylinositol transfer protein (Sec14p) function is essential for production of Golgi-derived secretory vesicles, and this requirement is bypassed by mutations in at least seven genes. Analyses of such ‘bypass Sec14p’ mutants suggest that Sec14p acts to maintain an essential Golgi membrane diacylglycerol (DAG) pool that somehow acts to promote Golgi secretory function. SPO14 encodes the sole yeast phosphatidylinositol-4,5-bisphosphate-activated phospholipase D (PLD). PLD function, while essential for meiosis, is dispensable for vegetative growth. Herein, we report specific physiological circumstances under which an unanticipated requirement for PLD activity in yeast vegetative Golgi secretory function is revealed. This PLD involvement is essential in ‘bypass Sec14p’ mutants where normally Sec14p-dependent Golgi secretory reactions are occurring in a Sec14p-independent manner. PLD catalytic activity is necessary but not sufficient for ‘bypass Sec14p’, and yeast operating under ‘bypass Sec14p’ conditions are ethanol-sensitive. These data suggest that PLD supports ‘bypass Sec14p’ by generating a phosphatidic acid pool that is somehow utilized in supporting yeast Golgi secretory function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the cycling human endometrium, the expression of interstitial collagenase (MMP-1) and of several related matrix metalloproteinases (MMPs) follows the late-secretory fall in sex steroid plasma concentrations and is thought to be a critical step leading to menstruation. The rapid and extensive lysis of interstitial matrix that precedes menstrual shedding requires a strict control of these proteinases. However, the mechanism by which ovarian steroids regulate endometrial MMPs remains unclear. We report here that, in the absence of ovarian steroids, MMP-1 expression in endometrial fibroblasts is markedly stimulated by medium conditioned by endometrial epithelial cells. This stimulation can be prevented by antibodies directed against interleukin 1α (IL-1α) but not against several other cytokines. Ovarian steroids inhibit the release of IL-1α and repress MMP-1 production by IL-1α-stimulated fibroblasts. In short-term cultures of endometrial explants obtained throughout the menstrual cycle, the release of both IL-1α and MMP-1 is essentially limited to the perimenstrual phase. We conclude that epithelium-derived IL-1α is the key paracrine inducer of MMP-1 in endometrial fibroblasts. However, MMP-1 production in the human endometrium is ultimately blocked by ovarian steroids, which act both upstream and downstream of IL-1α, thereby exerting an effective control via a “double-block” mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myasthenia gravis (MG) is a T cell-regulated, antibody-mediated autoimmune disease. Two peptides representing sequences of the human acetylcholine receptor α-subunit, p195–212 and p259–271, previously were shown to stimulate the proliferation of peripheral blood lymphocytes of patients with MG and were found to be immunodominant T cell epitopes in SJL and BALB/c mice, respectively. Single amino acid-substituted analogs of p195–212 and p259–271, as well as a dual analog composed of the tandemly arranged two single analogs, were shown to inhibit, in vitro and in vivo, MG-associated autoimmune responses. Stimulation of T cells through the antigen-specific T cell receptor activates tyrosine kinases and phospholipase C (PLC). Therefore, in attempts to understand the mechanism of action of the analogs, we first examined whether the myasthenogenic peptides trigger tyrosine phosphorylation and activation of phospholipase C. For that purpose, we measured generation of inositol phosphates and tyrosine phosphorylation of PLC after stimulation of the p195–212- and p259–271-specific T cell lines with these myasthenogenic peptides. Both myasthenogenic peptides stimulated generation of inositol phosphates as well as tyrosine phosphorylation of PLC. However, the single and dual analogs, although inducing tyrosine phosphorylation of PLC, could not induce PLC activity. Furthermore, the single and dual analogs inhibited the induced PLC activity whereas they could not inhibit tyrosine phosphorylation of PLC that was caused by the myasthenogenic peptides. Thus, the altered peptides and the dual analog act as partial agonists. The down-regulation of PLC activity by the analogs may account for their capacity to inhibit in vitro MG-associated T cell responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced activity of receptor tyrosine kinases such as the PDGF β-receptor and EGF receptor has been implicated as a contributing factor in the development of malignant and nonmalignant proliferative diseases such as cancer and atherosclerosis. Several epidemiological studies suggest that green tea may prevent the development of cancer and atherosclerosis. One of the major constituents of green tea is the polyphenol epigallocathechin-3 gallate (EGCG). In an attempt to offer a possible explanation for the anti-cancer and anti-atherosclerotic activity of EGCG, we examined the effect of EGCG on the PDGF-BB–, EGF-, angiotensin II-, and FCS-induced activation of the 44 kDa and 42 kDa mitogen-activated protein (MAP) kinase isoforms (p44mapk/p42mapk) in cultured vascular smooth muscle cells (VSMCs) from rat aorta. VSMCs were treated with EGCG (1–100 μM) for 24 h and stimulated with the above mentioned agonists for different time periods. Stimulation of the p44mapk/p42mapk was detected by the enhanced Western blotting method using phospho-specific MAP kinase antibodies that recognized the Tyr204-phosphorylated (active) isoforms. Treatment of VSMCs with 10 and 50 μM EGCG resulted in an 80% and a complete inhibition of the PDGF-BB–induced activation of MAP kinase isoforms, respectively. In striking contrast, EGCG (1–100 μM) did not influence MAP kinase activation by EGF, angiotensin II, and FCS. Similarly, the maximal effect of PDGF-BB on the c-fos and egr-1 mRNA expression as well as on intracellular free Ca2+ concentration was completely inhibited in EGCG-treated VSMCs, whereas the effect of EGF was not affected. Quantification of the immunoprecipitated tyrosine-phosphorylated PDGF-Rβ, phosphatidylinositol 3′-kinase, and phospholipase C-γ1 by the enhanced Western blotting method revealed that EGCG treatment effectively inhibits tyrosine phosphorylation of these kinases in VSMCs. Furthermore, we show that spheroid formation of human glioblastoma cells (A172) and colony formation of sis-transfected NIH 3T3 cells in semisolid agar are completely inhibited by 20–50 μM EGCG. Our findings demonstrate that EGCG is a selective inhibitor of the tyrosine phosphorylation of PDGF-Rβ and its downstream signaling pathway. The present findings may partly explain the anti-cancer and anti-atherosclerotic activity of green tea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin 1β (IL-1β), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a “leaderless” secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1β out of the cell. Indeed, although most of the IL-1β precursor (proIL-1β) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1β and the endolysosomal hydrolase cathepsin D or for both IL-1β and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1β is induced by acidotropic drugs. Treatment of monocytes with the sulfonylurea glibenclamide inhibits both IL-1β secretion and vesicular accumulation, suggesting that this drug prevents the translocation of proIL-1β from the cytosol into the vesicles. A high concentration of extracellular ATP and hypotonic medium increase secretion of IL-1β but deplete the vesicular proIL-1β content, indicating that exocytosis of proIL-1β–containing vesicles is regulated by ATP and osmotic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mast cells have been implicated in various diseases that are accompanied by neovascularization. The exact mechanisms by which mast cells might mediate an angiogenic response, however, are unclear and therefore, we have investigated the possible expression of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in the human mast cell line HMC-1 and in human skin mast cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that mast cells constitutively express VEGF121, VEGF165, and VEGF189. After a prolonged stimulation of cells for 24 h with phorbol 12-myristate 13-acetate (PMA) and the ionophore A23187, an additional transcript representing VEGF206 was detectable, as could be verified by sequence analysis. These results were confirmed at the protein level by Western blot analysis. When the amounts of VEGF released under unstimulated and stimulated conditions were compared, a significant increase was detectable after stimulation of cells. Human microvascular endothelial cells (HMVEC) responded to the supernatant of unstimulated HMC-1 cells with a dose-dependent mitogenic effect, neutralizable up to 90% in the presence of a VEGF-specific monoclonal antibody. Flow cytometry and postembedding immunoelectron microscopy were used to detect VEGF in its cell-associated form. VEGF was exclusively detectable in the secretory granules of isolated human skin mast cells. These results show that both normal and leukemic human mast cells constitutively express bioactive VEGF. Furthermore, this study contributes to the understanding of the physiological role of the strongly heparin-binding VEGF isoforms, since these were found for the first time to be expressed in an activation-dependent manner in HMC-1 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cytotoxic T lymphocyte (CTL) clone generated in vitro from the peripheral blood of a healthy HLA-A2-positive individual against a synthetic p53 protein-derived wild-type peptide (L9V) was shown to kill squamous carcinoma cell lines derived from two head and neck carcinomas, which expressed mutant p53 genes, in a L9V/HLA-A2 specific and restricted fashion. Thus, the normal tolerance against endogenously processed p53 protein-derived self-epitopes can be broken by peptide-specific in vitro priming. p53 protein-derived wild-type peptides might thus represent tumor associated target molecules for immunotherapeutical approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8+ CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5–12 log10) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8+ cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1+ humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two important cytokines mediating inflammation are tumor necrosis factor α (TNFα) and IL-1β, both of which require conversion to soluble forms by converting enzymes. The importance of TNFα-converting enzyme and IL-1β-converting enzyme in the production of circulating TNFα and IL-1β in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized. In these situations release and/or activation of cytokines may be different from that seen in response to a systemic stimulus, particularly because associations of various cell populations in these foci allows for the exposure of procytokines to the proteolytic enzymes produced by activated neutrophils, neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Cat G). To investigate the possibility of alternative processing of TNFα and/or IL-1β by neutrophil-derived proteinases, immunoreactive TNFα and IL-1β release from lipopolysaccharide-stimulated THP-1 cells was measured in the presence of activated human neutrophils. Under these conditions, TNFα and IL-1β release was augmented 2- to 5-fold. In the presence of a specific inhibitor of NE and PR3, enhanced release of both cytokines was largely abolished; however, in the presence of a NE and Cat G selective inhibitor, secretory leucocyte proteinase inhibitor, reduction of the enhanced release was minimal. This finding suggested that the augmented release was attributable to PR3 but not NE nor Cat G. Use of purified enzymes confirmed this conclusion. These results indicate that there may be alternative pathways for the production of these two proinflammatory cytokines, particularly in the context of local inflammatory processes.