687 resultados para HMG-CoA
Resumo:
The nuclear peroxisome proliferator-activated receptors (PPARs) alpha, beta, and gamma activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. Activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel retardation experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase-dependent induction of PPARs but also their ligand-dependent induction, suggesting an interaction between both pathways that leads to maximal transcriptional induction by PPARs. Moreover, comparing PPAR alpha knockout (KO) with PPAR alpha WT mice, we show that the expression of the acyl CoA oxidase (ACO) gene can be regulated by PKA-activated PPAR alpha in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity, and we propose a model associating this pathway in the control of fatty acid beta-oxidation under conditions of fasting, stress, and exercise.
Resumo:
Atherosclerosis, which is influenced by both traditional and nontraditional cardiovascular risk factors and has been characterized as an inflammatory process, is considered to be the main cause of the elevated cardiovascular risk associated with chronic kidney disease. The inflammatory component of atherosclerosis can be separated into an innate immune response involving monocytes and macrophages that respond to the excessive uptake of lipoproteins and an adaptive immune response that involves antigen-specific T cells. Concurrent with the influx of immune cells to the site of atherosclerotic lesion, the role of the adaptive immune response gradually increases. One of those cells are represented by the CD4+/CD25+ Tregs, which play indispensable roles in the maintenance of natural self-tolerance and negative control of pathological, as well as physiological, immune responses. Altered self-antigens such as oxidized LDLs may induce the development of CD4+/CD25+ Tregs with atheroprotective properties. However, atherosclerosis may be promoted by an imbalance between regulatory and pathogenic immunity that may be represented by the low expression of the forkhead box transcription factor (Foxp3) in CD4+/CD25+ Tregs. Such a defect may break immunologic tolerance and alter both specific and bystander immune suppression, leading to exacerbation of plaque development. Patients with end-stage kidney disease (ESKD) display a cellular immune dysfunction and accelerated atherosclerosis. Uremic solutes that accumulate during ESKD may be involved in these processes. In patients with ESKD and especially in those that are chronically hemodialyzed, oxidative stress induced by oxidized LDLs may increase CD4+/CD25+ Treg sensitivity to Fas-mediated apoptosis as a consequence of specific dysregulation of IL-2 expression. This review will focus on the current state of knowledge regarding the influence of CD4+/CD25+ Tregs on atherogenesis in patients with ESKD, and the potential effect of statins on the circulating number and the functional properties of these cells.
Resumo:
Activation of cultured hepatic stellate cells correlated with an enhanced expression of proteins involved in uptake and storage of fatty acids (FA translocase CD36, Acyl-CoA synthetase 2) and retinol (cellular retinol binding protein type I, CRBP-I; lecithin:retinol acyltransferases, LRAT). The increased expression of CRBP-I and LRAT during hepatic stellate cells activation, both involved in retinol esterification, was in contrast with the simultaneous depletion of their typical lipid-vitamin A (vitA) reserves. Since hepatic stellate cells express high levels of peroxisome proliferator activated receptor beta (PPARbeta), which become further induced during transition into the activated phenotype, we investigated the potential role of PPARbeta in the regulation of these changes. Administration of L165041, a PPARbeta-specific agonist, further induced the expression of CD36, B-FABP, CRBP-I, and LRAT, whereas their expression was inhibited by antisense PPARbeta mRNA. PPARbeta-RXR dimers bound to CRBP-I promoter sequences. Our observations suggest that PPARbeta regulates the expression of these genes, and thus could play an important role in vitA storage. In vivo, we observed a striking association between the enhanced expression of PPARbeta and CRBP-I in activated myofibroblast-like hepatic stellate cells and the manifestation of vitA autofluorescent droplets in the fibrotic septa after injury with CCl4 or CCl4 in combination with retinol.
Resumo:
Copy number variation (CNV) has recently gained considerable interest as a source of genetic variation likely to play a role in phenotypic diversity and evolution. Much effort has been put into the identification and mapping of regions that vary in copy number among seemingly normal individuals in humans and a number of model organisms, using bioinformatics or hybridization-based methods. These have allowed uncovering associations between copy number changes and complex diseases in whole-genome association studies, as well as identify new genomic disorders. At the genome-wide scale, however, the functional impact of CNV remains poorly studied. Here we review the current catalogs of CNVs, their association with diseases and how they link genotype and phenotype. We describe initial evidence which revealed that genes in CNV regions are expressed at lower and more variable levels than genes mapping elsewhere, and also that CNV not only affects the expression of genes varying in copy number, but also have a global influence on the transcriptome. Further studies are warranted for complete cataloguing and fine mapping of CNVs, as well as to elucidate the different mechanisms by which they influence gene expression.
Resumo:
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
Resumo:
Effects of dietary protein on oxidized cholesterol-induced alterations in linoleic acid and cholesterol metabolism were studied in 4-wk-old male Sprague-Dawley rats, using casein and soybean protein as dietary protein sources. The rats were fed one of the two proteins in cholesterol-free, 0.3% cholesterol or 0.3% oxidized cholesterol mixture diets using a pair-feeding protocol for 3 wk. In the soybean protein-fed group, rats fed oxidized cholesterol did not have lower activity of liver microsomal delta6 desaturase, the rate-limiting enzyme in the metabolism of linoleic acid to arachidonic acid, compared with rats fed cholesterol-free diet, whereas in the casein-fed group the desaturase activity was significantly greater in rats fed oxidized cholesterol than in those fed cholesterol-free diet. This was in contrast to a significant reduction in liver microsomal delta6 desaturase activity by cholesterol, irrespective of protein source. In general, these changes were reflected in the desaturation indices of liver phospholipids. Furthermore, soybean protein significantly increased the fecal excretion of neutral and acidic steroids and tended to reduce (P = 0.082) the accumulation of oxidized cholesterols in the liver. Thus, soybean protein partly modified some of the undesirable effects of oxidized cholesterol through its hypocholesterolemic effect and possibly through the modulation of hepatic delta6 desaturase activity.
Traitement des dyslipidémies et atteinte hépatique [Lipid-lowering treatment and liver dysfunction].
Resumo:
Statins are a cornerstone of cardiovascular prevention. Their utilization is mostly well tolerated and safe: the commonly reported hepatic adverse effect is an asymptomatic, reversible and dose-related increase in liver enzyme levels occurring in case of risks factors. Statins do not worsen liver function in most patients with chronic liver diseases, including nonalcoholic fatty liver disease and hepatitis C, and might be used cautionsly. However, decompensated cirrhosis and acute liver failure are contraindications for statins. Routine hepatic biochemical test monitoring is questioned and might be performed in following situations: chronic liver diseases, alcohol consumption, drug interactions. Other causes should be screened and treatment be temporarily withheld in case of an ALT elevation > 3 times the upper limit of the norm.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identify- ing it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential dif- ferent biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that ( )- C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.
Resumo:
C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identify- ing it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential dif- ferent biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that ( )- C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.
Resumo:
We supplemented diets with a-tocopheryl acetate (100 mg/kg) and replaced beef tallow (BT) in feeds with increasing doses of n-6- or n-3-rich vegetable fat sources (linseed and sunflower oil), and studied the effects on the fatty acid (FA) composition, the a-tocopherol (aT) content and the oxidative stability of rabbit plasma and liver. These effects were compared with those observed in a previous study in rabbit meat. As in meat, the content of saturated, monounsaturated and trans FA in plasma and liver mainly reflected feed FA profile, except stearic acid in liver, which increased as feeds contained higher doses of vegetable fat, which could be related to an inhibition of the activity of the stearoyl-CoA-desaturase. As linseed oil increased in feeds, the n-6/n-3 FA ratio was decreased in plasma and liver as a result of the incorporation of FA from diets and also, due to the different performance and selectivity of desaturase enzymes. However, an increase in the dose of vegetable fat in feeds led to a significant reduction in the aT content of plasma and liver, which was greater when the fat source was linseed oil. Increasing the dose of vegetable fat in feeds also led to an increase in the susceptibility to oxidation (lipid hydroperoxide (LHP) value) of rabbit plasma, liver and meat and on the thiobarbituric acid (TBA) values of meat. Although the dietary supplementation with a-tocopheryl acetate increased the aT content in plasma and liver, it did not modify significantly their TBA or LHP values. In meat however, both TBA and LHP values were reduced by the dietary supplementation with a-tocopheryl acetate. The plasma aT content reflected the aT content in tissues, and correlated negatively with tissue oxidability. From the studied diets, those containing 1.5% linseed oil plus 1.5% BT and 100 mg of a-tocopheryl acetate/kg most improved the FA composition and the oxidative stability of rabbit tissues.
Resumo:
OBJECTIVE: To evaluate the public health impact of statin prescribing strategies based on the Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin Study (JUPITER). METHODS: We studied 2268 adults aged 35-75 without cardiovascular disease in a population-based study in Switzerland in 2003-2006. We assessed the eligibility for statins according to the Adult Treatment Panel III (ATPIII) guidelines, and by adding "strict" (hs-CRP≥2.0mg/L and LDL-cholesterol <3.4mmol/L), and "extended" (hs-CRP≥2.0mg/L alone) JUPITER-like criteria. We estimated the proportion of CHD deaths potentially prevented over 10years in the Swiss population. RESULTS: Fifteen % were already taking statins, 42% were eligible by ATPIII guidelines, 53% by adding "strict", and 62% by adding "extended" criteria, with a total of 19% newly eligible. The number needed to treat with statins to avoid one CHD death over 10years was 38 for ATPIII, 84 for "strict" and 92 for "extended" JUPITER-like criteria. ATPIII would prevent 17% of CHD deaths, compared with 20% for ATPIII+"strict" and 23% for ATPIII + "extended" criteria (+6%). CONCLUSION: Implementing JUPITER-like strategies would make statin prescribing for primary prevention more common and less efficient than it is with current guidelines.
Resumo:
A published formula containing minimal aortic cross-sectional area and the flow deceleration pattern in the descending aorta obtained by cardiovascular magnetic resonance predicts significant coarctation of the aorta (CoA). However, the existing formula is complicated to use in clinical practice and has not been externally validated. Consequently, its clinical utility has been limited. The aim of this study was to derive a simple and clinically practical algorithm to predict severe CoA from data obtained by cardiovascular magnetic resonance. Seventy-nine consecutive patients who underwent cardiovascular magnetic resonance and cardiac catheterization for the evaluation of native or recurrent CoA at Children's Hospital Boston (n = 30) and the University of California, San Francisco (n = 49), were retrospectively reviewed. The published formula derived from data obtained at Children's Hospital Boston was first validated from data obtained at the University of California, San Francisco. Next, pooled data from the 2 institutions were analyzed, and a refined model was created using logistic regression methods. Finally, recursive partitioning was used to develop a clinically practical prediction tree to predict transcatheter systolic pressure gradient ≥ 20 mm Hg. Severe CoA was present in 48 patients (61%). Indexed minimal aortic cross-sectional area and heart rate-corrected flow deceleration time in the descending aorta were independent predictors of CoA gradient ≥ 20 mm Hg (p <0.01 for both). A prediction tree combining these variables reached a sensitivity and specificity of 90% and 76%, respectively. In conclusion, the presented prediction tree on the basis of cutoff values is easy to use and may help guide the management of patients investigated for CoA.
Resumo:
The effectiveness of lipid-lowering medication critically depends on the patients' compliance and the efficacy of the prescribed drug. The primary objective of this multicentre study was to compare the efficacy of rosuvastatin with or without access to compliance initiatives, in bringing patients to the Joint European Task Force's (1998) recommended low-density lipoprotein cholesterol (LDL-C) level goal (LDL-C, <3.0 mmol/L) at week 24. Secondary objectives were comparison of the number and percentage of patients achieving European goals (1998, 2003) for LDL-C and other lipid parameters. Patients with primary hypercholesterolaemia and a 10-year coronary heart disease risk of >20% received open label rosuvastatin treatment for 24 weeks with or without access to compliance enhancement tools. The initial daily dosage of 10 mg could be doubled at week 12. Compliance tools included: a) a starter pack for subjects containing a videotape, an educational leaflet, a passport/goal diary and details of the helpline and/or website; b) regular personalised letters to provide message reinforcement; c) a toll-free helpline and a website. The majority of patients (67%) achieved the 1998 European goal for LDL-C at week 24. 31% required an increase in dosage of rosuvastatin to 20 mg at week 12. Compliance enhancement tools did not increase the number of patients achieving either the 1998 or the 2003 European target for plasma lipids. Rosuvastatin was well tolerated during this study. The safety profile was comparable with other drugs of the same class. 63 patients in the 10 mg group and 58 in the 10 mg Plus group discontinued treatment. The main reasons for discontinuation were adverse events (39 patients in the 10 mg group; 35 patients in the 10 mg Plus group) and loss to follow-up (13 patients in the 10 mg group; 9 patients in the 10 mg Plus group). The two most frequently reported adverse events were myalgia (34 patients, 3% respectively) and back pain (23 patients, 2% respectively). The overall rate of temporary or permanent study discontinuation due to adverse events was 9% (n = 101) in patients receiving 10 mg rosuvastatin and 3% (n = 9) in patients titrated up to 20 mg rosuvastatin. Rosuvastatin was effective in lowering LDL-C values in patients with hypercholesterolaemia to the 1998 European target at week 24. However, compliance enhancement tools did not increase the number of patients achieving any European targets for plasma lipids.
Resumo:
OBJECTIVE-Chronic exercise and obesity both increase intra-myocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype.RESEARCH DESIGN AND METHODS-A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies.RESULTS-DAG content in the NWA group was approximately twofold higher than in the OBS group and similar to 50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, DAGs, and insulin sensitivity.CONCLUSIONS-Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance. Diabetes 60:2588-2597, 2011