917 resultados para HIV-1 viral load


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virus-specific CD8+ T cells are known to play an important role in the control of HIV infection. In this study we investigated whether there may be qualitative differences in the CD8+ T cell response in HIV-1- and HIV-2-infected individuals that contribute to the relatively efficient control of the latter infection. A molecular comparison of global TCR heterogeneity showed a more oligoclonal pattern of CD8 cells in HIV-1- than HIV-2-infected patients. This was reflected in restricted and conserved TCR usage by CD8+ T cells recognizing individual HLA-A2- and HLA-B57-restricted viral epitopes in HIV-1, with limited plasticity in their response to amino acid substitutions within these epitopes. The more diverse TCR usage observed for HIV-2-specific CD8 T cells was associated with an enhanced potential for CD8+ expansion and IFN- production on cross-recognition of variant epitopes. Our data suggest a mechanism that could account for any possible cross-protection that may be mediated by HIV-2-specific CD8+ T cells against HIV-1 infection. Furthermore, they have implications for HIV vaccine development, demonstrating an association between a polyclonal, virus-specific CD8+ T cell response and an enhanced capacity to tolerate substitutions within T cell epitopes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5' -untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5'-CCCCGGCAAGGAGGGG-3-'. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistence of HIV-1 reservoirs within the Central Nervous System (CNS) remains a significant challenge to the efficacy of potent anti-HIV-1 drugs. The primary human Brain Microvascular Endothelial Cells (HBMVEC) constitutes the Blood Brain Barrier (BBB) which interferes with anti-HIV drug delivery into the CNS. The ATP binding cassette (ABC) transporters expressed on HBMVEC can efflux HIV-1 protease inhibitors (HPI), enabling the persistence of HIV-1 in CNS. Constitutive low level expression of several ABC-transporters, such as MDR1 (a.k.a. P-gp) and MRPs are documented in HBMVEC. Although it is recognized that inflammatory cytokines and exposure to xenobiotic drug substrates (e.g HPI) can augment the expression of these transporters, it is not known whether concomitant exposure to virus and anti-retroviral drugs can increase drug-efflux functions in HBMVEC. Our in vitro studies showed that exposure of HBMVEC to HIV-1 significantly up-regulates both MDR1 gene expression and protein levels; however, no significant increases in either MRP-1 or MRP-2 were observed. Furthermore, calcein-AM dye-efflux assays using HBMVEC showed that, compared to virus exposure alone, the MDR1 mediated drug-efflux function was significantly induced following concomitant exposure to both HIV-1 and saquinavir (SQV). This increase in MDR1 mediated drug-efflux was further substantiated via increased intracellular retention of radiolabeled [3H-] SQV. The crucial role of MDR1 in 3H-SQV efflux from HBMVEC was further confirmed by using both a MDR1 specific blocker (PSC-833) and MDR1 specific siRNAs. Therefore, MDR1 specific drug-efflux function increases in HBMVEC following co-exposure to HIV-1 and SQV which can reduce the penetration of HPIs into the infected brain reservoirs of HIV-1. A targeted suppression of MDR1 in the BBB may thus provide a novel strategy to suppress residual viral replication in the CNS, by augmenting the therapeutic efficacy of HAART drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the wide availability of antiretroviral drugs, more than 250,000 infants are vertically infected with HIV-1 annually, emphasizing the need for additional interventions to eliminate pediatric HIV-1 infections. Here, we aimed to define humoral immune correlates of risk of mother-to-child transmission (MTCT) of HIV-1, including responses associated with protection in the RV144 vaccine trial. Eighty-three untreated, HIV-1-transmitting mothers and 165 propensity score-matched nontransmitting mothers were selected from the Women and Infants Transmission Study (WITS) of US nonbreastfeeding, HIV-1-infected mothers. In a multivariable logistic regression model, the magnitude of the maternal IgG responses specific for the third variable loop (V3) of the HIV-1 envelope was predictive of a reduced risk of MTCT. Neutralizing Ab responses against easy-to-neutralize (tier 1) HIV-1 strains also predicted a reduced risk of peripartum transmission in secondary analyses. Moreover, recombinant maternal V3-specific IgG mAbs mediated neutralization of autologous HIV-1 isolates. Thus, common V3-specific Ab responses in maternal plasma predicted a reduced risk of MTCT and mediated autologous virus neutralization, suggesting that boosting these maternal Ab responses may further reduce HIV-1 MTCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the emerging epidemic of renal disease in HIV+ patients and the fact that HIV DNA and RNA persist in the kidneys of HIV+ patients despite therapy, it is necessary to understand the role of direct HIV-1 infection of the kidney. HIV-associated kidney disease pathogenesis is attributed in large part to viral proteins. Expression of Vpr in renal tubule epithelial cells (RTECs) induces G2 arrest, apoptosis and polyploidy. The ability of a subset of cells to overcome the G2/M block and progress to polyploidy is not well understood. Polyploidy frequently associates with a bypass of cell death and disease pathogenesis. Given the ability of the kidney to serve as a unique compartment for HIV-1 infection, and the observed occurrence of polyploid cells in HIV+ renal cells, it is critical to understand the mechanisms and consequences of Vpr-induced polyploidy.

Here I determined effects of HIV-1 Vpr expression in renal cells using highly efficient transduction with VSV.G pseudotyped lentiviral vectors expressing Vpr in the HK2 human tubule epithelial cell line. Using FACS, fluorescence microscopy, and live cell imaging I show that G2 escape immediately precedes a critical junction between two distinct outcomes in Vpr+ RTECs: mitotic cell death and polyploidy. Vpr+ cells that evade aberrant mitosis and become polyploid have a substantially higher survival rate than those that undergo complete mitosis, and this survival correlates with enrichment for polyploidy in cell culture over time. Further, I identify a novel role for ATM kinase in promoting G2 arrest escape and polyploidy in this context. In summary, my work identifies ATM-dependent override of Vpr-mediated G2/M arrest as a critical determinant of cell fate Vpr+ RTECs. Further, our work highlights how a poorly understood HIV mechanism, ploidy increase, may offer insight into key processes of reservoir establishment and disease pathogenesis in HIV+ kidneys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV-1 integrase, the viral enzyme responsible for provirus integration into the host genome, can be actively degraded by the ubiquitin-proteasome pathway. Here, we identify von Hippel-Lindau binding protein 1(VBP1), a subunit of the prefoldin chaperone, as an integrase cellular binding protein that bridges interaction between integrase and the cullin2 (Cul2)-based von Hippel-Lindau (VHL) ubiquitin ligase. We demonstrate that VBP1 and Cul2/VHL are required for proper HIV-1 expression at a step between integrase-dependent proviral integration into the host genome and transcription of viral genes. Using both an siRNA approach and Cul2/VHL mutant cells, we show that VBP1 and the Cul2/VHL ligase cooperate in the efficient polyubiquitylation of integrase and its subsequent proteasome-mediated degradation. Results presented here support a role for integrase degradation by the prefoldin-VHL-proteasome pathway in the integration-transcription transition of the viral replication cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insertion of a DNA copy of its RNA genome into a chromosome of the host cell is mediated by the viral integrase with the help of mostly uncharacterized cellular cofactors. We have recently described that the transcriptional co-activator LEDGF/p75 strongly interacts with HIV-1 integrase. Here we show that interaction of HIV-1 integrase with LEDGF/p75 is important for viral replication. Using multiple approaches including two-hybrid interaction studies, random and directed mutagenesis, we could demonstrate that HIV-1 virus harboring a single mutation that disrupts integrase-LEDGF/p75 interaction, resulted in defective HIV-1 replication. Furthermore, we found that LEDGF/p75 tethers HIV-1 integrase to chromosomes and that this interaction may be important for the integration process and the replication of HIV-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear import of HIV-1 preintegration complexes (PICs) allows the virus to infect nondividing cells. Integrase (IN), the PIC-associated viral enzyme responsible for the integration of the viral genome into the host cell DNA, displays karyophilic properties and has been proposed to participate to the nuclear import of the PIC. Styrylquinolines (SQs) have been shown to block viral replication at nontoxic concentrations and to inhibit IN 3'-processing activity in vitro by competing with the DNA substrate binding. However, several lines of evidence suggested that SQs could have a postentry, preintegrative antiviral effect in infected cells. To gain new insights on the mechanism of their antiviral activity, SQs were assayed for their ability to affect nuclear import of HIV-1 IN and compared with the effect of a specific strand transfer inhibitor. Using an in vitro transport assay, we have previously shown that IN import is a saturable mechanism, thus showing that a limiting cellular factor is involved in this process. We now demonstrate that SQs specifically and efficiently inhibit in vitro nuclear import of IN without affecting other import pathways, whereas a specific strand transfer inhibitor does not affect IN import. These data suggest that SQs not only inhibit IN-DNA interaction but would also inhibit the interaction between IN and the cellular factor required for its nuclear import.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HIV-1 genome contains several genes coding for auxiliary proteins, including the small Vpr protein. Vpr affects the integrity of the nuclear envelope and participates in the nuclear translocation of the preintegration complex containing the viral DNA. Here, we show by photobleaching experiments performed on living cells expressing a Vpr-green fluorescent protein fusion that the protein shuttles between the nucleus and the cytoplasm, but a significant fraction is concentrated at the nuclear envelope, supporting the hypothesis that Vpr interacts with components of the nuclear pore complex. An interaction between HIV-1 Vpr and the human nucleoporin CG1 (hCG1) was revealed in the yeast two-hybrid system, and then confirmed both in vitro and in transfected cells. This interaction does not involve the FG repeat domain of hCG1 but rather the N-terminal region of the protein. Using a nuclear import assay based on digitonin-permeabilized cells, we demonstrate that hCG1 participates in the docking of Vpr at the nuclear envelope. This association of Vpr with a component of the nuclear pore complex may contribute to the disruption of the nuclear envelope and to the nuclear import of the viral DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The karyophilic properties of the human immunodeficiency virus, type I (HIV-1) pre-integration complex (PIC) allow the virus to infect non-dividing cells. To better understand the mechanisms responsible for nuclear translocation of the PIC, we investigated nuclear import of HIV-1 integrase (IN), a PIC-associated viral enzyme involved in the integration of the viral genome in the host cell DNA. Accumulation of HIV-1 IN into nuclei of digitonin-permeabilized cells does not result from passive diffusion but rather from an active transport that occurs through the nuclear pore complexes. HIV-1 IN is imported by a saturable mechanism, implying that a limiting cellular factor is responsible for this process. Although IN has been previously proposed to contain classical basic nuclear localization signals, we found that nuclear accumulation of IN does not involve karyopherins alpha, beta1, and beta2-mediated pathways. Neither the non-hydrolyzable GTP analog, guanosine 5'-O-(thiotriphosphate), nor the GTP hydrolysis-deficient Ran mutant, RanQ69L, significantly affects nuclear import of IN, which depends instead on ATP hydrolysis. Therefore these results support the idea that IN import is not mediated by members of the karyopherin beta family. More generally, in vitro nuclear import of IN does not require addition of cytosolic factors, suggesting that cellular factor(s) involved in this active but atypical pathway process probably remain associated with the nuclear compartment or the nuclear pore complexes from permeabilized cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Importance A key factor in assessing the effectiveness and cost-effectiveness of antiretroviral therapy (ART) as a prevention strategy is the absolute risk of HIV transmission through condomless sex with suppressed HIV-1 RNA viral load for both anal and vaginal sex. Objective To evaluate the rate of within-couple HIV transmission (heterosexual and men who have sex with men [MSM]) during periods of sex without condoms and when the HIV-positive partner had HIV-1 RNA load less than 200 copies/mL. Design, Setting, and Participants The prospective, observational PARTNER (Partners of People on ART-A New Evaluation of the Risks) study was conducted at 75 clinical sites in 14 European countries and enrolled 1166 HIV serodifferent couples (HIV-positive partner taking suppressive ART) who reported condomless sex (September 2010 to May 2014). Eligibility criteria for inclusion of couple-years of follow-up were condomless sex and HIV-1 RNA load less than 200 copies/mL. Anonymized phylogenetic analysis compared couples' HIV-1 polymerase and envelope sequences if an HIV-negative partner became infected to determine phylogenetically linked transmissions. Exposures Condomless sexual activity with an HIV-positive partner taking virally suppressive ART. Main Outcomes and Measures Risk of within-couple HIV transmission to the HIV-negative partner. Results Among 1166 enrolled couples, 888 (mean age, 42 years [IQR, 35-48]; 548 heterosexual [61.7%] and 340 MSM [38.3%]) provided 1238 eligible couple-years of follow-up (median follow-up, 1.3 years [IQR, 0.8-2.0]). At baseline, couples reported condomless sex for a median of 2 years (IQR, 0.5-6.3). Condomless sex with other partners was reported by 108 HIV-negative MSM (33%) and 21 heterosexuals (4%). During follow-up, couples reported condomless sex a median of 37 times per year (IQR, 15-71), with MSM couples reporting approximately 22 000 condomless sex acts and heterosexuals approximately 36 000. Although 11 HIV-negative partners became HIV-positive (10 MSM; 1 heterosexual; 8 reported condomless sex with other partners), no phylogenetically linked transmissions occurred over eligible couple-years of follow-up, giving a rate of within-couple HIV transmission of zero, with an upper 95% confidence limit of 0.30/100 couple-years of follow-up. The upper 95% confidence limit for condomless anal sex was 0.71 per 100 couple-years of follow-up. Conclusions and Relevance Among serodifferent heterosexual and MSM couples in which the HIV-positive partner was using suppressive ART and who reported condomless sex, during median follow-up of 1.3 years per couple, there were no documented cases of within-couple HIV transmission (upper 95% confidence limit, 0.30/100 couple-years of follow-up). Additional longer-term follow-up is necessary to provide more precise estimates of risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an open access article under the CC BY-NC-ND license - http://creativecommons.org/licenses/by-nc-nd/4.0/

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster presented at the 22nd International HIV Dynamics and Evolution. Budapest, Hungary, 13-16 May 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miami-Dade County has approximately 27,000 people living with HIV (PLWH), and the highest HIV incidence in the nation. PLWH have reported several types of sleep disturbances. Caffeine is an anorexic and lipolytic stimulant that may adversely affect sleep patterns, dietary intakes and body composition. High caffeine consumption (>250 mg. per day or the equivalent of >4 cups of brewed coffee) may also affect general functionality, adherence to antiretroviral treatment (ART) and HIV care. This study assess the relationship of high caffeine intake with markers of disease progression, sleep quality, insomnia, anxiety, nutritional intakes and body composition. A convenience sample of 130 PLWH on stable ART were recruited from the Miami Adult Studies on HIV (MASH) cohort, and followed for three months. After consenting, questionnaires on Modified Caffeine Consumption (MCCQ), Pittsburg Insomnia Rating Scale (PIRS), Pittsburg Sleep Quality Index (PSQI), Generalized Anxiety Disorder-7 (GAD-7), socio-demographics, drug and medication use were completed. CD4 count, HIV viral load, anthropometries, and body composition measures were obtained. Mean age was 47.89±6.37 years, 60.8% were male and 75.4% were African-Americans. Mean caffeine intake at baseline was 337.63 ± 304.97 mg/day (Range: 0-1498 mg/day) and did not change significantly at 3 months. In linear regression, high caffeine consumption was associated with higher CD4 cell count (β=1.532, P=0.049), lower HIV viral load (β=-1.067, P=0.048), higher global PIRS (β=1.776, P=0.046), global PSQI (β=2.587, P=0.038), and GAD-7 scores (β=1.674, P=0.027), and with lower fat mass (β=-0.994, P=0.042), energy intakes (β=-1.643, P=0.042) and fat consumption (β=-1.902, P=0.044), adjusting for relevant socioeconomic and disease progression variables. Over three months, these associations remained significant. The association of high caffeine with lower BMI weakened when excluding users of other anorexic and stimulant drugs such as cocaine and methamphetamine, suggesting that caffeine in combination, but not alone, may worsen their action. In summary, high caffeine consumption was associated with better measures of disease progression; but was also detrimental on sleep quality, nutritional intakes, BMI and body composition and associated with insomnia and anxiety. Large scale studies for longer time are needed to elucidate the contribution of caffeine to the well-being of PLWH.