968 resultados para HEV B 13
Resumo:
A measurement of the top-quark pair-production cross section in ppbar collisions at sqrt{s}=1.96 TeV using data corresponding to an integrated luminosity of 1.12/fb collected with the Collider Detector at Fermilab is presented. Decays of top-quark pairs into the final states e nu + jets and mu nu + jets are selected, and the cross section and the b-jet identification efficiency are determined using a new measurement technique which requires that the measured cross sections with exactly one and multiple identified b-quarks from the top-quark decays agree. Assuming a top-quark mass of 175 GeV/c^2, a cross section of 8.5+/-0.6(stat.)+/-0.7(syst.) pb is measured.
Resumo:
Alternating Differential Scanning Calorimetric (ADSC) and electrical switching studies have been undertaken on Ge20Se80-xBix glasses (1 <= x <= 13), to understand the effect of topological thresholds on thermal properties and electrical switching behavior. It is found that the compositional dependence of glass transition temperature (Tg), crystallization temperature (T-c1) and thermal stability (AT) of Ge20Se80-xBix glasses show anomalies at a composition x= 5, the rigidity percolation/stiffness threshold of the system. Further, unusual variations are also observed in different thermal properties, such as T-g, T-c1, Delta T, Delta C-p and Delta H-NR, at the composition x= 10, which indicates the occurrence of chemical threshold in these glasses at this composition. Electrical switching studies indicate that Ge20Se8o_RBig glasses with 5 11 exhibit threshold switching behavior and those with x = 12 and 13 show memory switching. A sharp decrease has been noticed in the switching voltages with bismuth concentration, which is due to the more metallic nature of bismuth and the presence of Bi+ ions. Further, a saturation is seen in the decrease in V-T around x = 6, which is related to bismuth phase percolation at higher concentrations of Bi. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The simple two dimensional C-13-satellite J/D-resolved experiments have been proposed for the visualization of enantiomers, extraction of homo- and hetero-nuclear residual dipolar couplings and also H-1 chemical shift differences between the enantiomers in the anisotropic medium. The significant advantages of the techniques are in the determination of scalar couplings of bigger organic molecules. The scalar couplings specific to a second abundant spin such as F-19 can be selectively extracted from the severely overlapped spectrum. The methodologies are demonstrated on a chiral molecule aligned in the chiral liquid crystal medium and two different organic molecules in the isotropic solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
he solvation of (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrinato)zinc(II)[Zn(obtpp)], in twelve different solvents results in large red shifts of the B and Q bands of the porphyrin accompanied by enhanced absorbance ratios of the Q bands. These observations are ascribed to the destabilisation of the highest occupied molecular orbital a2u of the porphyrin arising from a flow of charge from the axial ligand to the porphyrin ring through the zinc(II) ion. The binding constants of adducts of [Zn(obtpp)] with neutral bases have been found to be an order of magnitude greater than those observed for the corresponding adducts of (5,10,15,20-tetraphenylporphyrinato)-zinc and vary in the order piperidine > imidazole > pyridine > 3-methylpyridine > pyridine-3-carbaldehyde. The enhanced binding constants and large spectral shifts are interpreted in terms of the electrophilicity of [Zn(obtpp)] induced by the electron-withdrawing bromine substituents in the porphyrin core. The structure of [Zn(obtpp)(PrCN)2] has been determined; it reveals six-co-ordinated zinc(II) with two long Zn–N distance [2.51(4), 2.59(3)Å]. The porphyrin is non-planar and displays a saddle-shaped conformation.
Resumo:
Exposure with above band gap light and thermal annealing at a temperature near to glass transition temperature, of thermally evaporated amorphous (As2S3)(0.87)Sb-0.13 thin films of 1 mu m thickness, were found to be accompanied by structural effects, which in turn, lead to changes in the optical properties. The optical properties of thin films induced by illumination and annealing were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photo darkening or photo bleaching was observed in the film depending upon the conditions of the light exposure or annealing. These changes of the optical properties are assigned to the change of homopolar bond densities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Monte Carlo and molecular dynamics simulations on an Ar-13 cluster in zeolite L have been carried out at a series of temperatures to understand the rigid-nonrigid transition corresponding to the solid-liquid transition exhibited by the free Ar-13 cluster. The icosahedral geometry of the free cluster is no longer preferred when the cluster is confined in the zeolite. The root-mean-squared pair distance fluctuation, delta, exhibits a sharp, well-defined rigid-nonrigid transition at 17 K as compared to 27 K for the free cluster. Multiple peaks in the distribution of short-time averages of the guest-host interaction energy indicate coexistence of two phases.; It is shown that this transition is associated with the inner atoms becoming mobile at 17 K even while the outer layer atoms, which are in close proximity to the zeolitic wall, continue to be comparatively immobile. This may be contrasted with the melting of large free clusters of 40 or more atoms which exhibit surface melting. Guest-host interactions seem to play a predominant role in determining the properties of confined clusters. We demonstrate that the volume of the cluster increases rather sharply at 17 and 27 K respectively for the confined and the free cluster. Power spectra suggest that the motion of the inner atoms is generally parallel to the atoms which form the cage wall.
Resumo:
While bonding between d(10) atoms and ions in molecular systems has been well studied, less attention has been paid to interactions between such seemingly closed shell species in extended inorganic solids. In this contribution, we present visualizations of the electronic structures of the delafossites ABO(2) (A = Cu, Ag, Au) with particular emphasis on the nature of d(10)-d(10) interactions in the close packed plane of the coinage metal ion. We find that on going from Cu to Ag to Au, the extent of bonding between A and A increases. However, the structures (in terms of distances) of these compounds are largely determined by the strongly ionic 13,11 0 interaction and for the larger B ions Sc, In and Y, the A atoms are sufficiently well-separated that A-A bonding is almost negligible. We also analyze some interesting differences between Ag and Au, including the larger A-O covalency of the Au. The trends in electronic structure suggest that the Ag and Au compounds are not good candidate transparent conducting oxides. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Molecules exhibiting a thermotropic liquid-crystalline property have acquired significant importance due to their sensitivity to external stimuli such as temperature, mechanical forces, and electric and magnetic fields. As a result, several novel mesogens have been synthesized by the introduction of various functional groups in the vicinity of the aromatic core as well as in the side chains and their properties have been studied. In the present study, we report three-ring mesogens with hydroxyl groups at one terminal. These mesogens were synthesized by a multistep route, and structural characterization was accomplished by spectral techniques. The mesophase properties were studied by hot-stage optical polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. An enantiotropic nematic phase was noticed for lower homologues, while an additional smectic C phase was found for higher homologues. Solid-state high-resolution natural abundance (13)C NMR studies of a typical mesogen in the solid phase and in the mesophases have been carried out. The (13)C NMR spectrum of the mesogen in the smectic C and nematic phases indicated spontaneous alignment of the molecule in the magnetic field. By utilizing the two-dimensional separated local field (SLF) NMR experiment known as SAMPI4, (13)C-(1)H dipolar couplings have been obtained, which were utilized to determine the orientational order parameters of the mesogen.
Resumo:
The total synthesis of the enantiomer of the tetrahydrofuran containing natural product Jaspine B is reported. The key reactions in the synthesis include formation of the tetrahydrofuran unit by an acid mediated Williamson etherification and a subsequent elaboration with an olefin cross metathesis reaction. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Specific heat, resistivity, magnetic susceptibility, linear thermal expansion (LTE), and high-resolution synchrotron x-ray powder diffraction investigations of single crystals Fe(1+y) Te (0.06 <= y <= 0.15) reveal a splitting of a single, first-order transition for y <= 0.11 into two transitions for y >= 0.13. Most strikingly, all measurements on identical samples Fe(1.13)Te consistently indicate that, upon cooling, the magnetic transition at T(N) precedes the first-order structural transition at a lower temperature T(s). The structural transition in turn coincides with a change in the character of the magnetic structure. The LTE measurements along the crystallographic c axis display a small distortion close to T(N) due to a lattice striction as a consequence of magnetic ordering, and a much larger change at T(s). The lattice symmetry changes, however, only below T(s) as indicated by powder x-ray diffraction. This behavior is in stark contrast to the sequence in which the phase transitions occur in Fe pnictides.
Resumo:
Structural characterizations using XRD and C-13 NMR spectroscopy of two rodlike mesogens consisting of (i) three phenyl ring core with a polar cyano terminal and (ii) four phenyl ring core with flexible dodecyl terminal chain are presented. The three-ring-core mesogen with cyano terminal exhibits enantiotropic smectic A phase while the four-ring mesogen reveals polymesomorphism and shows enantiotropic nematic, smectic C, and tilted hexatic phases. The molecular organization in the three-ring mesogen is found to be partial bilayer smectic Ad type, and the interdigitation of the molecules in the neighboring layers is attributed to the presence of the polar terminal group. For the four-ring mesogen, the XRD results confirm the existence of the smectic C and the tilted hexatic mesophases. A thermal variation of the layer spacing across the smectic C phase followed by a discrete jump at the transition to the tilted hexatic phase is also observed. The tilt angles have been estimated to be about 45 degrees in the smectic C phase and about 40 degrees in tilted hexatic phase. C-13 NMR results indicate that in the mesophase the molecules are aligned parallel to the magnetic field. From the C-13-H-1 dipolar couplings determined from the 2D experiments, the overall order parameter for the three-ring mesogen in its smectic A phase has been estimated to be 0.72 while values ranging from 0.88 to 0.44 have been obtained for the four-ring mesogen as it passes from the tilted hexatic to the nematic phase. The orientations of the different rings of the core unit with respect to each other and also with respect to the long axis of the molecule have also been obtained.
Resumo:
Metal-doped anatase nanosized titania photocatalysts were successfully synthesized using a sal gel process. Different amounts of the dopants (0.2, 0.4, 0.6, 0.8 and 1.0%) of the metals (Ag, Ni, Co and Pd) were utilized. The UV-Vis spectra (solid state diffuse reflectance spectra) of the doped nanoparticles exhibited a red shift in the absorption edge as a result of metal doping. The metal-doped nanoparticles were investigated for their photocatalytic activity under visible-light irradiation using Rhodamine B (Rh B) as a control pollutant. The results obtained indicate that the metal-doped titania had the highest activity at 0.4% metal loading. The kinetic models revealed that the photodegradation of Rh B followed a pseudo first order reaction. From ion chromatography (IC) analysis the degradation by-products Rhodamine B fragments were found to be acetate, chloride, nitrite, carbonate and nitrate ions.
Resumo:
Hydrogen bonding is the most important non-covalent interaction utilised in building supramolecular assemblies and is preferred often as a means of construction of molecular, oligomeric as well as polymeric materials that show liquid crystalline properties. In this work, a pyridine based nematogenic acceptor has been synthesized and mixed with non-mesogenic 4-methoxy benzoic acid to get a hydrogen bonded mesogen. The existence of hydrogen bonding between the pyridyl unit and the carboxylic acid was established using FT-IR spectroscopy from the observation of characteristic stretching vibrations of unionized type at 2425 and 1927 cm(-1). The mesogenic acceptor and the complex have been investigated using C-13 NMR in solution, solid and liquid crystalline states. Together with the 2D separated local field NMR experiments, the studies confirm the molecular structure in the mesophase and yield the local orientational order parameters. It is observed that the insertion of 4-methoxy benzoic acid not only enhances the mesophase stability but also induces a smectic phase due to an increase in the core length of the hydrogen bonded mesogen.
Resumo:
Development of simple functionalization methods to attach biomolecules such as proteins and DNA on inexpensive substrates is important for widespread use of low cost, disposable biosensors. Here, we describe a method based on polyelectrolyte multilayers to attach single stranded DNA molecules to conventional glass slides as well as a completely non-standard substrate, namely flexible plastic transparency sheets. We then use the functionalized transparency sheets to specifically detect single stranded Hepatitis B DNA sequences from samples. We also demonstrate a blocking method for reducing non-specific binding of target DNA sequences using negatively charged polyelectrolyte molecules. The polyelectrolyte based functionalization method, which relies on surface charge as opposed to covalent surface linkages, could be an attractive platform to develop assays on inexpensive substrates for low cost biosensing.