997 resultados para HELICOVERPA-ZEA
Resumo:
Phaeosphaeria leaf spot (PLS) is an important disease in tropical and subtropical maize (Zea mays, L.) growing areas, but there is limited information on its inheritance. Thus, this research was conducted to study the inheritance of the PLS disease in tropical maize by using QTL mapping and to assess the feasibility of using marker-assisted selection aimed to develop genotypes resistance to this disease. Highly susceptible L14-04B and highly resistant L08-05F inbred lines were crossed to develop an F(2) population. Two-hundred and fifty six F(2) plants were genotyped with 143 microsatellite markers and their F(2:3) progenies were evaluated at seven environments. Ten plants per plot were evaluated 30 days after silk emergence following a rating scale, and the plot means were used for analyses. The heritability coefficient on a progeny mean basis was high (91.37%), and six QTL were mapped, with one QTL on chromosomes 1, 3, 4, and 6, and two QTL on chromosome 8. The gene action of the QTL ranged from additive to partial dominance, and the average level of dominance was partial dominance; also a dominance x dominance epistatic effect was detected between the QTL mapped on chromosome 8. The phenotypic variance explained by each QTL ranged from 2.91 to 11.86%, and the joint QTL effects explained 41.62% of the phenotypic variance. The alleles conditioning resistance to PLS disease of all mapped QTL were in the resistant parental inbred L08-05F. Thus, these alleles could be transferred to other elite maize inbreds by marker-assisted backcross selection to develop hybrids resistant to PLS disease.
Resumo:
Genetic variability in S(1) families from different maize populations. The objectives of the present work were directed towards the study of genetic: variablilty In seven maize populations with a broad genetic base, as a guide for population improvement. The field evaluation was conducted in completely randomized blocks, at one location (Anhembi, Sao Paulo state) with different groups, of S(1) families Obtained from seven populations (GO-D: dent type, GO-F: flint type, GO-L: long car, GO-G: thick Car; and composites G3, G4 and GO-S). Estimates were obtained for genetic variance (progeny mean basis), phenotypic variance of families means, and coefficient of heritability (broad sense) for progeny means. Estimates of heritability were high for Car weight (0,89 to 0.94), car length (0.77 to 0.88) and car diameter (0.77 to 0.92); and lower for plant height (0.58 to 0.80) and Car height (0.54 to 0.84), thus showing the high Potential of the populations for recurrent selection based oil S, families. Ear yield in the base populations used as controls varied front 11,200 kg ha(-1) (GO-D) to 12,800 kg ha(-1) (G3). The means of S(1) families varied from 6,070 kg ha(-1) (GO-F) to 7,380 kg ha(-1) (G4); the Inbreeding depression in S(1) Families varied front 37.5% (G4) to 48.0% (G3) relative to the non-inbred population.
Resumo:
Water use and crop coefficient for hybrid DKB 390. This work aims to characterize the water use of maize hybrid DKB 390 under suitable conditions of irrigation for both sufficient and below-optimal situations of nitrogen supply. Crop coefficient values for different stages are also presented as a result, in order to provide the basis for crop water budget and management throughout the cycle. A field experiment was carried Out during the main season, in which biomass, soil moisture, leaf area, climate data and light transmittance were evaluated. These have allowed deriving water balance, use and efficiency. The mentioned genotype requires around 600 nun for high yield targets, being less efficient when led under below-optimal nitrogen fertilization.
Resumo:
No-till (NT) system with crop rotation is one of the most effective strategies to improve agricultural sustainability in tropical and subtropical regions. To control soil acidity in NT, lime is broadcast on the surface without incorporation. The increase in soil pH due to surface liming may decrease zinc (Zn) availability and its uptake by crops. A field experiment was performed in Parana State, Brazil, on a loamy, kaolinitic, thermic Typic Hapludox to evaluate Zn bioavailability in a NT system after surface liming and re-liming. Dolomitic lime was surface applied on the main plots in July 1993 at the rates of 0, 2, 4, and 6 Mg ha-1. In June 2000, the main plots were divided in two subplots to study of the effect of surface re-liming at the rates of 0 and 3 Mg ha-1. The cropping sequence was soybean [Glycine max (L.) Merrill] (2001-2 and 2002-3), wheat (Triticum aestivum L.) (2003), soybean (2003-4), corn (Zea mays L.) (2004-5), and soybean (2005-6). Soil samples were collected at the following depths: 0-0.05, 0.05-0.10, and 0.10-0.20m, 10 years after surface liming and 3 years after surface re-liming. Soil Zn levels were extracted by four extractants: (i) 0.005molL-1 diethylenetriaminepentaacetic acid (DTPA) + 0.1molL-1 triethanolamine (TEA) + 0.01molL-1 calcium chloride (CaCl2) solution at pH7.3 (DTPA-TEA), (ii) 0.1molL-1 hydrochloric acid (HCl) solution, (iii) Mehlich 1 solution, and (iv) Mehlich 3 solution. Zinc concentrations in leaves and grains of soybean, wheat, and corn were also determined. Soil pH (0.01molL-1 CaCl2 suspension) varied from 4.4 to 6.1, at the 0- to 0.05-m depth, from 4.2 to 5.3 at the 0.05- to 0.10-m depth, and from 4.2 to 4.8 at the 0.10- to 0.20-m depth, after liming and re-liming. Zinc concentrations evaluated by DTPA-TEA, 0.1molL-1 HCl, Mehlich 1, and Mehlich 3 solutions were not changed as a result of lime rate application. Re-liming increased Zn concentrations extracted by 0.1molL-1 HCl at 0-0.05m deep and by DTPA-TEA at 0.05-0.10m deep. Surface-applied lime promoted a decrease in Zn concentrations of the crops, mainly in grains, because of increased soil pH at the surface layers. Regardless of the liming treatments, levels of Zn were sufficient to soybean, wheat, and corn nutrition under NT.
Resumo:
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.
Resumo:
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant`s signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.
Resumo:
The variation in the Ca:Mg ratio in amendments used to neutralize soil acidity is one way of altering the availability of those nutrients to the plants in acid soils. The objective of the work was to evaluate the effect of different proportions of calcium and magnesium in the form of CaCO(3) and MgCO(3) Oil the nutrient uptake, and initial production of dry matter by corn plants. The study was carried out in greenhouse conditions, in Lages, SC, with a completely randomized experimental design, with three replications. The treatments were the application of equivalent to 21.0 t ha(-1) of lime, using mixtures of CaCO(3) and MgCO(3) in several proportions to obtain different Ca:Mg ratios (1: 1, 2:1, 4:1, 8:1, 16:1 and 32:1), on a Humic Alic Cambisol, with 310 g kg(-1) of clay. The application of treatments caused the following Ca:Mg ratios in the CEC: 1. 1: 1, 2.1:1, 4.0:1, 8.1:1, 16.4:1 and 31.8:1. The high concentrations of exchangeable Ca in soil caused by addition of lime with high Ca content inhibited the uptake of Mg and K by the corn plants. The increase in the soil Ca:Mg ratio reduced the dry matter production and height of plants in the initial stage of development.
Resumo:
The objective was to use natural pigments to replace sodium erythorbate (NaEry), a synthetic compound used as an antioxidant in sausage formulations, and to evaluate the oxidative stability of the samples. Six assays were prepared in which sodium erythorbate (ERY) at 0.05 g/100 g was substituted by norbixin (NOR), lycopene (LYC), zeaxanthin (ZEA), beta-carotene (CAR) or dextrose (used as a control (CON)). Physical, chemical, color, texture and sensory parameters were measured on the first day and after 45 days of storage at 4 degrees C. All pigments used in the sausage formulations were able to maintain the oxidative stability of the sausages (MDA equivalents <038 mg/kg). Zeaxanthin and norbixin were the most efficient antioxidants of those tested. This antioxidant effect might be associated with the intermediate polarities of these two compounds, which would allow them to concentrate in the membrane lipids or emulsion interface, where lipid oxidation is most prevalent. Other volatile secondary products of oxidation besides MDA should be evaluated in further studies involving natural pigments and sensory oxidative stability. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Confocal scanning laser microscopic observations were made on live chloroplasts in intact cells and on mechanically isolated, intact chloroplasts. Chlorophyll fluorescence was imaged to observe thylakoid membrane architecture. C-3 plant species studied included Spinacia oleracea L., Spathiphyllum sp. Schott, cv. 'Mauna Loa', and Pisum sativum L. C-4 plants were also investigated: Saccharum officinarum L., Sorghum bicolor L. Moench, Zea mays L. and Panicum miliaceum L. Some Spinacia chloroplasts were treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to enhance or sodium dithionite (SD) to reduce the photosystem II fluorescence signal. Confocal microscopy images of C-3 chloroplasts differed from electron microscopy pictures because they showed discrete spots of bright fluorescence with black regions between them. There was no evidence of fluorescence from stroma thylakoids. The thylakoid membrane system at times appeared to be string-like, with brightly fluorescing grana lined up like beads. C-4 bundle sheath chloroplasts were imaged from three different types of C-4 plants. Saccharum and Sorghum bundle sheath chloroplasts showed homogeneous fluorescence and were much dimmer than mesophyll chloroplasts. Zea had rudimentary grana, and dim, homogeneous intergrana fluorescence was visualised. Panicum contained thylakoids similar in appearance and string-like arrangement to mesophyll chloroplasts. Isolated Pisum chloroplasts, treated with a drop of 5 mM MgCl2 showed a thylakoid membrane system which appeared to be unravelling. Spongy mesophyll chloroplasts of Spinacia treated with 5 mM sodium dithionite showed a granal thylakoid system with distinct regions of no fluorescence. A time-series experiment provided evidence of dynamic membrane rearrangements over a period of half an hour.
Resumo:
A precise, reproducible deletion made during in vitro reverse transcription of RNA2 from the icosahedral positive-stranded Helicoverpa armigera stunt virus (Tetraviridae) is described. The deletion, located between two hexamer repeats, is a 50-base sequence that includes one copy of the hexamer repeat. Only the Moloney murine leukemia virus reverse transcriptase and its derivative Superscript I, carrying a deletion of the carboxy-terminal RNase H region, showed this response, indicating a template-switching mechanism different from one proposed that involves a RNase H-dependent strand transfer, Superscript II, however, which carries point mutations to reduce RNase H activity, does not cause a deletion. A possible mechanism involves the enzyme pausing at the 3' side of a stem-loop structure and the 3' end of the nascent DNA strand separating from the template and reannealing to the upstream hexamer repeat.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
A glasshouse trial, in which maize (Zea mays L. cv. Pioneer 3270) was grown in 35 north-eastern Australian soils of low magnesium (Mg) status, was undertaken to study the response to applied Mg. Of the soils studied, 20 were strongly acidic (pH(1:5 soil:water) <5.4), and in these soils the response to Mg was studied in both the presence and absence of lime. Magnesium application significantly (P < 0.05) increased dry matter yield in 10 soils, all of which were strongly acidic. However, significant Mg responses were recorded in 6 soils in the presence of lime, indicating that, in many situations, liming strategies may need to include consideration of Mg nutrition. Critical soil test values for 90% relative yield were 0.21 cmol(+)/kg of exchangeable Mg or 7% Mg saturation, whilst the critical (90% yield) plant tissue Mg concentration (whole shoots) was 0.15%.
Resumo:
Objective: Several limitations of published bioelectrical impedance analysis (BIA) equations have been reported. The aims were to develop in a multiethnic, elderly population a new prediction equation and cross-validate it along with some published BIA equations for estimating fat-free mass using deuterium oxide dilution as the reference method. Design and setting: Cross-sectional study of elderly from five developing countries. Methods: Total body water (TBW) measured by deuterium dilution was used to determine fat-free mass (FFM) in 383 subjects. Anthropometric and BIA variables were also measured. Only 377 subjects were included for the analysis, randomly divided into development and cross-validation groups after stratified by gender. Stepwise model selection was used to generate the model and Bland Altman analysis was used to test agreement. Results: FFM = 2.95 - 3.89 (Gender) + 0.514 (Ht(2)/Z) + 0.090 (Waist) + 0.156 (Body weight). The model fit parameters were an R(2), total F-Ratio, and the SEE of 0.88, 314.3, and 3.3, respectively. None of the published BIA equations met the criteria for agreement. The new BIA equation underestimated FFM by just 0.3 kg in the cross-validation sample. The mean of the difference between FFM by TBW and the new BIA equation were not significantly different; 95% of the differences were between the limits of agreement of -6.3 to 6.9 kg of FFM. There was no significant association between the mean of the differences and their averages (r = 0.008 and p = 0.2). Conclusions: This new BIA equation offers a valid option compared with some of the current published BIA equations to estimate FFM in elderly subjects from five developing countries.
Resumo:
Several members of the Rubiaceae and Violaceae families produce a series of cycloticles or macrocyclic peptides of 29-31 amino acids with an embedded cystine knot. We aim to understand the mechanism of synthesis of cyclic peptides in plants and have isolated a cDNA clone that encodes the cyclotide kalata Ell as well as three other clones for related cycloticles from the African plant Olden-landia affinis. The cDNA clones encode prepropeptides with a 20-aa signal sequence, an N-terminal prosequence of 46-68 amino acids and one, two, or three cyclotide domains separated by regions of about 25 aa. The corresponding cycloticles have been isolated from plant material, indicating that the cyclotide domains are excised and cyclized from all four predicted precursor proteins. The exact processing site is likely to lie on the N-terminal side of the strongly conserved GlyLeuPro or SerLeuPro sequence that flanks both sides of the cyclotide domain. Cyclotides have previously been assigned an antimicrobial function; here we describe a potent inhibitory effect on the growth and development of larvae from the Lepidopteran species Helicoverpa punctigera.
Resumo:
The presence of vesicular-arbuscular mycorrhizal (VAM) fungi in long-term cane-growing fields associated with yield decline led to the supposition that VAM fungi may be responsible for the poor yields. A glasshouse trial was established to test the effectiveness of a species of VAM fungi, Glomus clarum, extracted from one of these North Queensland fields on the growth of sugarcane (Saccharum interspecific hybrid), maize (Zea mays), and soybean (Glycine max) for 6 phosphorus (P) rates (0, 2.7, 8.2, 25, 74, 222 mg/kg). For maize and soybean plants that received VAM (+ VAM), root colonisation was associated with enhanced P uptake, improved dry weight (DW) production, and higher index tissue-P concentrations than those without VAM (-VAM). By comparing DW responses of maize and soybean for different P rates, savings in fertiliser P of up to 160 and 213 kg/ha, respectively, were realised. Sugarcane plants were generally less responsive. Apart from a 30% DW increase with VAM when 2.7 mg P/kg was added, DW of +VAM plants was equivalent to, or worse than in the case of 222 mg P/kg, DW of -VAM plants. For all 3 host species, colonisation was least at the highest P application, presumably from excessive P within the plant tissue. Critical P concentrations for the 3 host species were below those reported elsewhere, and for soybean and sugarcane, the critical concentration for +VAM plants was lower than that of -VAM plants. There are 3 implications that arise from this study. First, VAM fungi present in cane-growing soils can promote the growth of maize and soybean, which are potential rotation crops, over a range of P levels. Second, the mycorrhizal strain taken from this site did not generally contribute to a yield decline in sugarcane plants. Third, application of P fertiliser is not necessary for sugarcane when acid-extractable P is