365 resultados para HEADWATER CATCHMENTS
Resumo:
A type of macro drainage solution widely used in urban areas with predomi-nance of closed catchments (basins without outlet) is the implementation of detention and infiltration reservoirs (DIR). This type of solution has the main function of storing surface runoff and to promote soil infiltration and, consequently, aquifer recharge. The practice is to avoid floods in the drainage basin low-lying areas. The catchment waterproofing reduces the distributed groundwater recharge in urban areas, as is the case of Natal city, RN. However, the advantage of DIR is to concentrate the runoff and to promote aquifer recharge to an amount that can surpass the distributed natu-ral recharge. In this paper, we proposed studying a small urban drainage catchment, named Experimental Mirassol Watershed (EMW) in Natal, RN, whose outlet is a DIR. The rainfall-runoff transformation processes, water accumulation in DIR and the pro-cess of infiltration and percolation in the soil profile until the free aquifer were mod-eled and, from rainfall event observations, water levels in DIR and free aquifer water level measurements, and also, parameter values determination, it is was enabled to calibrate and modeling these combined processes. The mathematical modeling was carried out from two numerical models. We used the rainfall-runoff model developed by RIGHETTO (2014), and besides, we developed a one-dimensional model to simu-late the soil infiltration, percolation, redistribution soil water and groundwater in a combined system to the reservoir water balance. Continuous simulation was run over a period of eighteen months in time intervals of one minute. The drainage basin was discretized in blocks units as well as street reaches and the soil profile in vertical cells of 2 cm deep to a total depth of 30 m. The generated hydrographs were transformed into inlet volumes to the DIR and then, it was carried out water balance in these time intervals, considering infiltration and percolation of water in the soil profile. As a re-sult, we get to evaluate the storage water process in DIR as well as the infiltration of water, redistribution into the soil and the groundwater aquifer recharge, in continuous temporal simulation. We found that the DIR has good performance to storage excess water drainage and to contribute to the local aquifer recharge process (Aquifer Dunas / Barreiras).
Resumo:
The Rauer Group is an archipelago in Prydz Bay, East Antarctica. The ice-free islands and the surrounding shallow marine areas provide valuable archives for the reconstruction of the late Pleistocene and Holocene environmental and climatic history of the region. Two sediment records from two marine inlets of Rauer Group have been studied for their sedimentological, geochemical, and biological characteristics. Radiocarbon ages from one of the inlets indicate ice-free conditions within the last glacial cycle, probably during the second half of Marine Isotope Stage 3. Subsequent ice sheet coverage of Rauer Group during the Last Glacial Maxiumum (LGM) can be inferred from a till layer recovered in one of the basins. The inlets became ice-free prior to 11,200 cal yr BP, when biogenic sedimentation started. Deglacial processes in the catchments, however, influenced the inlets until ~9200 cal. yr BP as evidenced by the input of minerogenic material. Marine productivity under relatively open water conditions indicates an early Holocene climate optimum until 8200 cal. yr BP, which is followed by a cooler period with increased sea ice. Warmer conditions are inferred for the mid Holocene, when both basins experienced an input of freshwater between ~5700-3500 cal. yr BP, probably due to ice-sheet melting and increased precipitation on the islands. Neoglacial cooling in the late Holocene since c. 3500 cal yr BP is reflected by an increase in sea ice in both inlets.
Resumo:
In September 2008 several cores (68 cm-115 cm length) (water depth: 93 m) were retrieved from Lake Nam Co (southern-central Tibetan Plateau; 4718 m a.s.l.). This study focuses on the interpretation of high-resolution (partly 0.2 cm) data from three gravity cores and the upper part of a 10.4 m long piston core, i.e., the past 4000 cal BP in terms of lake level changes, hydrological variations in the catchment area and consequently variations in monsoon strength. A wide spectrum of sedimentological, geochemical and mineralogical investigations was carried out. Results are presented for XRF core-scans, grain size distribution, XRD-measurements and SEM-image analyses. These data are complemented by an age-depth model using 210Pb and 137Cs analyses as well as eleven AMS-14C-ages. This model is supported by excellent agreement between secular variations determined on one of the gravity cores to geomagnetic field models. This is a significant improvement of the chronology as most catchments of lacustrine systems on the Tibetan Plateau contain carbonates resulting in an unknown reservoir effect for radiocarbon dates. The good correlation of our record to the geomagnetic field models confirms our age-depth model and indicates only insignificant changes in the reservoir effect throughout the last 4 ka. High (summer-) monsoonal activity, i.e. moist environmental conditions, was detected in our record between approximately 4000 and 1950 cal BP as well as between 1480 and 1200 cal BP. Accordingly, lower monsoon activity prevails in periods between the two intervals and thereafter. This pattern shows a good correlation to the variability of the Indian Ocean Summer Monsoon (IOSM) as recorded in a peat bog ~1000 km in NE direction from Lake Nam Co. This is the first time that such a supra regional homogenous monsoon activity is shown on the Tibetan Plateau and beyond. Finally our data show a significant lake level rise after the Little Ice Age (LIA) in Lake Nam Co which is suggested to be linked to glacier melting in consequence of rising temperatures occurring on the whole Tibetan Plateau during this time.
Resumo:
Funding: This work was supported by the following sources of funding: European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project (DT); Leverhulme Trust for funding through PLATO (RPG-2014-016) (DT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Resumo:
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.
Resumo:
Barium in marine terrigenous surface sediments of the European Nordic Seas is analysed to evaluate its potential as palaeoproductivity proxy. Biogenic Ba is calculated from Ba and Al data using a conventional approach. For the determination of appropriate detrital Ba/Al ratios a compilation of Ba and Al analyses in rocks and soils of the catchments surrounding the Nordic Seas is presented. The resulting average detrital Ba/Al ratio of 0.0070 is similar to global crustal average values. In the southern Nordic Seas the high input of basaltic material with a low Ba/Al ratio is evident from high values of magnetic susceptibility and low Al/Ti ratios. Most of the Ba in the marine surface sediments is of terrigenous and not of biogenic origin. Variability in the lithogenic composition has been considered by the application of regionally varying Ba/Al ratios. The biogenic Ba values are comparable with those observed in the central Arctic Ocean, they are lower than in other oceanic regions. Biogenic Ba values are correlated with other productivity proxies and with oceanographic data for a validation of the applicability in paleoceanography. In the Iceland Sea and partly in the marginal sea-ice zone of the Greenland Sea elevated values of biogenic Ba indicate seasonal phytoplankton blooms. In both areas paleoproductivities may be reconstructed based on Ba and Al data of sediment cores.
Resumo:
In this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chem¬istry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.
Resumo:
The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (dP) with values of -8.6(±0.2) per mil for d18O and -58(±2) per mil for d2H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of -0.17(±0.02) per mil per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.
Resumo:
Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific d13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific d13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific d13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific d13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.
Resumo:
The water stored in and flowing through the subsurface is fundamental for sustaining human activities and needs, feeding water and its constituents to surface water bodies and supporting the functioning of their ecosystems. Quantifying the changes that affect the subsurface water is crucial for our understanding of its dynamics and changes driven by climate change and other changes in the landscape, such as in land-use and water-use. It is inherently difficult to directly measure soil moisture and groundwater levels over large spatial scales and long times. Models are therefore needed to capture the soil moisture and groundwater level dynamics over such large spatiotemporal scales. This thesis develops a modeling framework that allows for long-term catchment-scale screening of soil moisture and groundwater level changes. The novelty in this development resides in an explicit link drawn between catchment-scale hydroclimatic and soil hydraulics conditions, using observed runoff data as an approximation of soil water flux and accounting for the effects of snow storage-melting dynamics on that flux. Both past and future relative changes can be assessed by use of this modeling framework, with future change projections based on common climate model outputs. By direct model-observation comparison, the thesis shows that the developed modeling framework can reproduce the temporal variability of large-scale changes in soil water storage, as obtained from the GRACE satellite product, for most of 25 large study catchments around the world. Also compared with locally measured soil water content and groundwater level in 10 U.S. catchments, the modeling approach can reasonably well reproduce relative seasonal fluctuations around long-term average values. The developed modeling framework is further used to project soil moisture changes due to expected future climate change for 81 catchments around the world. The future soil moisture changes depend on the considered radiative forcing scenario (RCP) but are overall large for the occurrence frequency of dry and wet events and the inter-annual variability of seasonal soil moisture. These changes tend to be higher for the dry events and the dry season, respectively, than for the corresponding wet quantities, indicating increased drought risk for some parts of the world.
Resumo:
We surveyed macroinvertebrate communities in 31 hill streams in the Vouga River and Mondego River catchments in central Portugal. Despite applying a "least-impacted" criterion, channel and bank management was common, with 38% of streams demonstrating channel modification (damming) and 80% with evidence of bank modification. Principal component analysis (PCA) at the family and species level related the macroinvertebrates to habitat variables derived at three spatial scales -- site (20 m), reach (200 m), and catchment. Variation in community structure between sites was similar at the species and family level and was statistically related to pH, conductivity, temperature, flow, shade, and substrate size at the site scale; channel and bank habitat and riparian vegetation and land-use at the reach scale; and altitude and slope at the catchment scale. While the effects of river management were apparent in various ecologically important habitat features at the site and reach scale, a direct relationship with macroinvertebrate assemblages was only apparent between the extent of walled banks and the secondary PCA axis described by species data. The strong relationship between catchment scale variables and descriptors of physical structure at the reach and site scale suggests that catchment-scale parameters are valuable predicators of macroinvertebrate community structure in these streams despite the anthropogenic modifications of the natural habitat.
Resumo:
Considerable attention has been paid to the potentially confounding effects of geological and seasonal variation on outputs from bioassessments in temperate streams, but our understanding about these influences is limited for many tropical systems. We explored variation in macroinvertebrate assemblage composition and the environmental characteristics of 3rd- to 5th-order streams in a geologically heterogeneous tropical landscape in the wet and dry seasons. Study streams drained catchments with land cover ranging from predominantly forested to agricultural land, but data indicated that distinct water-chemistry and substratum conditions associated with predominantly calcareous and silicate geologies were key determinants of macroinvertebrate assemblage composition. Most notably, calcareous streams were characterized by a relatively abundant noninsect fauna, particularly a pachychilid gastropod snail. The association between geological variation and assemblage composition was apparent during both seasons, but significant temporal variation in compositional characteristics was detected only in calcareous streams, possibly because of limited statistical power to detect change at silicate sites, or the limited extent of our temporal data. We discuss the implications of our findings for tropical bioassessment programs. Our key findings suggest that geology can be an important determinant of macroinvertebrate assemblages in tropical streams and that geological heterogeneity may influence the scale of temporal response in characteristic macroinvertebrate assemblages.
Resumo:
Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.
Resumo:
Land use in the river catchments of tropical North Queensland appears to have increased the export of sediment and nutrients to the coast. Although evidence of harmful effect of sediment on coastal and riverine ecosystems is limited, there is a growing concern about its possible negative impacts. Sugarcane cultivation on the floodplains of the tropical North Queensland river catchments is thought to be an important source of excess sediment in the river drainage systems. Minimum-tillage, trash blanket harvesting has been shown to reduce erosion from sloping sugarcane fields, but in the strongly modified floodplain landscape other elements (e.g. drains, water furrows and headlands) could still be important sediment sources. The main objectives of this thesis are to quantify the amount of sediment coming from low-lying cane land and identify the important sediment sources in the landscape. The results of this thesis enable sugarcane farmers to take targeted measures for further reduction of the export of sediment and nutrients. Sediment budgets provide a useful approach to identify and quantify potential sediment sources. For this study a sediment budget is calculated for a part of the Ripple Creek catchment, which is a sub-catchment of the Lower Herbert River. The input of sediment from all potential sources in cane land and the storage of sediment within the catchment have been quantified and compared with the output of sediment from the catchment. Input from, and storage on headlands, main drains, minor drains and water furrows, was estimated from erosion pin and surface profile measurements. Input from forested upland, input from fields and the output at the outlet of the catchment was estimated with discharge data from gauged streams and flumes. Data for the sediment budget were collected during two ‘wet’-seasons: 1999-2000 and 2000-2001. The results of the sediment budget indicate that this tropical floodplain area is a net source of sediment. Plant cane fields, which do not have a protective trash cover, were the largest net source of sediment during the 1999-2000 season. Sediment input from water furrows was higher, but there was also considerable storage of sediment in this landscape element. Headlands tend to act as sinks. The source or sink function of drains is less clear, but seems to depend on their shape and vegetation cover. An important problem in this study is the high uncertainty in the estimates of the sediment budget components and is, for example, likely to be the cause of the imbalance in the sediment budget. High uncertainties have particularly affected the results from the 20002001 season. The main source of uncertainty is spatial variation in the erosion and deposition processes. Uncertainty has to be taken into consideration when interpreting the budget results. The observation of a floodplain as sediment source contradicts the general understanding that floodplains are areas of sediment storage within river catchments. A second objective of this thesis was therefore to provide an answer to the question: how can floodplains in the tropical North Queensland catchments can be a source of sediment? In geomorphic literature various factors have been pointed out, that could control floodplain erosion processes. However, their importance is not 'uniquely identified'. Among the most apparent factors are the stream power of the floodwater and the resistance of the floodplain surface both through its sedimentary composition and the vegetation cover. If the cultivated floodplains of the North Queensland catchments are considered in the light of these factors, there is a justified reason to expect them to be a sediment source. Cultivation has lowered the resistance of their surface; increased drainage has increased the drainage velocity and flood control structures have altered flooding patterns. For the Ripple Creek floodplain four qualitative scenarios have been developed that describe erosion and deposition under different flow conditions. Two of these scenarios were experienced during the budget study, involving runoff from local hillslopes and heavy rainfall, which caused floodplain erosion. In the longer term larger flood events, involving floodwater from the Herbert River, may lead to different erosion and deposition processes. The present study has shown that the tropical floodplain of the Herbert River catchment can be a source of sediment under particular flow conditions. It has also shown which elements in the sugarcane landscape are the most important sediment sources under these conditions. This understanding will enable sugarcane farmers to further reduce sediment export from cane land and prevent the negative impact this may have on the North Queensland coastal ecosystems.
Resumo:
Six of New Zealand’s 16 regional councils are trialling collaborative planning as a means of addressing complex challenges in freshwater management. Although some work has been undertaken to evaluate similarities and differences across those processes, the success or failure rests with the public’s acceptance of the processes and their outcomes. This is the first study to evaluate public perceptions of freshwater management in regions with collaborative processes. We surveyed 450 respondents in Hawke’s Bay, Northland, and Waikato, some of whom live in catchments in which collaborative processes are under way and some of whom do not. In addition to assessing awareness of the collaborative planning processes, the survey measured perceptions regarding the regional council’s management of freshwater resources, the extent of agreement regarding freshwater management among various interests, the fairness of freshwater management, and the extent to which respondents believe that their interests and concerns are included in freshwater management. We hypothesized that relative to respondents in parts of the region in which traditional processes are in places, respondents in catchments with collaborative management of freshwater resources would have more positive perceptions of management, agreement, fairness, and interests, even if there is low awareness that a collaborative planning process is under way. Survey results indicate that knowledge of collaborative processes is generally low and that living in catchments with collaborative processes does not impact respondents’ perceptions of management, agreement, fairness, or interests in Northland or Waikato. However, relative to Hawke’s Bay respondents living outside of the collaborative catchment, respondents living inside the collaborative catchment believe that the regional council’s freshwater management is better and fairer. Moreover, Hawke’s Bay residents living inside the collaborative catchment perceive less conflict over freshwater management than Hawke’s Bay respondents living outside the collaborative catchment. Further research is needed to identify the reasons for this regional variation.