938 resultados para Guidance navigation
Resumo:
Nowadays few people consider finding their way in unfamiliar areas a problem as a GPS (Global Positioning System) combined with some simple map software can easily tell you how to get from A to B. Although this opportunity has only become available during the last decade, recent experiments show that long-distance migrating animals had already solved this problem. Even after displacement over thousands of kilometres to previously unknown areas, experienced but not first time migrant birds quickly adjust their course toward their destination, proving the existence of an experience-based GPS in these birds. Determining latitude is a relatively simple task, even for humans, whereas longitude poses much larger problems. Birds and other animals however have found a way to achieve this, although we do not yet know how. Possible ways of determining longitude includes using celestial cues in combination with an internal clock, geomagnetic cues such as magnetic intensity or perhaps even olfactory cues. Presently, there is not enough evidence to rule out any of these, and years of studying birds in a laboratory setting have yielded partly contradictory results. We suggest that a concerted effort, where the study of animals in a natural setting goes hand-in-hand with lab-based study, may be necessary to fully understand the mechanism underlying the long-distance navigation system of birds. As such, researchers must remain receptive to alternative interpretations and bear in mind that animal navigation may not necessarily be similar to the human system, and that we know from many years of investigation of long-distance navigation in birds that at least some birds do have a GPS-but we are uncertain how it works.
Resumo:
Bats have been extensively studied with regard to their ability to orient, navigate and hunt prey by means of echolocation, but almost nothing is known about how they orient and navigate in situations such as migration and homing outside the range of their echolocation system. As volant animals, bats face many of the same problems and challenges as birds. Migrating bats must relocate summer and winter home ranges over distances as far as 2,000 km. Foraging bats must be able to relocate their home roost if they range beyond a familiar area, and indeed circumstantial evidence suggests that these animals can home from more than 600 km. However, an extensive research program on homing and navigation in bats halted in the early 1970s. The field of bird navigation has advanced greatly since that time and many of the mechanisms that birds are known to use for navigation were not known or widely accepted at this time. In this paper I discuss what is known about orientation and navigation in bats and use bird navigation as a model for future research in bat navigation. Technology is advancing such that previous difficulties in studying orientation in bats in the field can be overcome and so that the mechanisms of navigation in this highly mobile animal can finally be elucidated.
Resumo:
Although the use of olfactory cues in pigeon navigation is well established, the generality of olfactory navigation remains uncertain because of apparent variability in results gained by different researchers in different regions. We report the results of the first experiments investigating the effect of anosmia on homing pigeons reared in a previously uninvestigated region, southern England. In series 1, experienced birds showed little effect of anosmia induced with zinc sulphate at unfamiliar sites 30 km and 39 km from the loft, but treated birds were significantly poorer than controls at homing from an unfamiliar site 66 km distant (and in pooled results). In series 2, naive (untrained) birds, both control and zinc-sulphate-treated, showed poor homing abilities and initial orientation from sites 25 km, 36 km and 39 km from the loft. Nevertheless, in pooled results, controls showed significantly better homeward orientation than anosmic birds and were significantly more likely to home on the day of release. The most likely explanation for our results is that pigeons are able to use olfactory navigation in southern England, but that for some reason the olfactory map is relatively weak.
Resumo:
Unmanned surface vehicles (USVs) are able to accomplish difficult and challenging tasks both in civilian and defence sectors without endangering human lives. Their ability to work round the clock makes them well-suited for matters that demand immediate attention. These issues include but not limited to mines countermeasures, measuring the extent of an oil spill and locating the source of a chemical discharge. A number of USV programmes have emerged in the last decade for a variety of aforementioned purposes. Springer USV is one such research project highlighted in this paper. The intention herein is to report results emanating from data acquired from experiments on the Springer vessel whilst testing its advanced navigation, guidance and control (NGC) subsystems. The algorithms developed for these systems are based on soft-computing methodologies. A novel form of data fusion navigation algorithm has been developed and integrated with a modified optimal controller. Experimental results are presented and analysed for various scenarios including single and multiple waypoints tracking and fixed and time-varying reference bearings. It is demonstrated that the proposed NGC system provides promising results despite the presence of modelling uncertainty and external disturbances.
Resumo:
Organ donation plays a major role in the management of patients with single organ failure of the kidneys, liver, pancreas, heart, or lung, or with combined organ failure of heart and lung (such as in cystic fibrosis) or of kidney and pancreas (such as in diabetes). A shortage of transplant organs has resulted in long waits for transplantation. Currently about 500 people in the United Kingdom die each year because of a shortage of donated organs,1 and at 31 March 2011 almost 7000 patients were waiting for a kidney transplant1 and would be having costly dialysis with serious morbidity and impact on quality of life. This shortage of organs is partly the result of relatively low numbers of road traffic deaths (lower than in many countries) but is also the result of inefficiencies in the donor identification and consent processes. This article summarises the most recent recommendations from the National Institute for Health and Clinical Excellence (NICE) on improving donor identification and consent rates for deceased organ donation.2
Resumo:
Birds have remained the dominant model for studying the mechanisms of animal navigation for decades, with much of what has been discovered coming from laboratory studies or model systems. The miniaturisation of tracking technology in recent years now promises opportunities for studying navigation during migration itself (migratory navigation) on an unprecedented scale. Even if migration tracking studies are principally being designed for other purposes, we argue that attention to salient environmental variables during the design or analysis of a study may enable a host of navigational questions to be addressed, greatly enriching the field. We explore candidate variables in the form of a series of contrasts (e. g. land vs ocean or night vs day migration), which may vary naturally between migratory species, populations or even within the life span of a migrating individual. We discuss how these contrasts might help address questions of sensory mechanisms, spatiotemporal representational strategies and adaptive variation in navigational ability. We suggest that this comparative approach may help enrich our knowledge about the natural history of migratory navigation in birds.
Resumo:
In recent years unmanned vehicles have grown in popularity, with an ever increasing number of applications in industry, the military and research within air, ground and marine domains. In particular, the challenges posed by unmanned marine vehicles in order to increase the level of autonomy include automatic obstacle avoidance and conformance with the Rules of the Road when navigating in the presence of other maritime traffic. The USV Master Plan which has been established for the US Navy outlines a list of objectives for improving autonomy in order to increase mission diversity and reduce the amount of supervisory intervention. This paper addresses the specific development needs based on notable research carried out to date, primarily with regard to navigation, guidance, control and motion planning. The integration of the International Regulations for Avoiding Collisions at Sea within the obstacle avoidance protocols seeks to prevent maritime accidents attributed to human error. The addition of these critical safety measures may be key to a future growth in demand for USVs, as they serve to pave the way for establishing legal policies for unmanned vessels.
Resumo:
The ancillary (non-sounding) body movements made by expert musicians during performance have been shown to indicate expressive, emotional, and structural features of the music to observers, even if the sound of the performance is absent. If such ancillary body movements are a component of skilled musical performance, then it should follow that acquiring the temporal control of such movements is a feature of musical skill acquisition. This proposition is tested using measures derived from a theory of temporal guidance of movement, “General Tau Theory” (Lee in Ecol Psychol 10:221–250, 1998; Lee et al. in Exp Brain Res 139:151–159, 2001), to compare movements made during performances of intermediate-level clarinetists before and after learning a new piece of music. Results indicate that the temporal control of ancillary body movements made by participants was stronger in performances after the music had been learned and was closer to the measures of temporal control found for an expert musician’s movements. These findings provide evidence that the temporal control of musicians’ ancillary body movements develops with musical learning. These results have implications for other skillful behaviors and nonverbal communication.