972 resultados para Growth-factor-i
Resumo:
IGF2 is an autocrine ligand for the beta cell IGF1R receptor and GLP-1 increases the activity of this autocrine loop by enhancing IGF1R expression, a mechanism that mediates the trophic effects of GLP-1 on beta cell mass and function. Here, we investigated the regulation of IGF2 biosynthesis and secretion. We showed that glutamine rapidly and strongly induced IGF2 mRNA translation using reporter constructs transduced in MIN6 cells and primary islet cells. This was followed by rapid secretion of IGF2 via the regulated pathway, as revealed by the presence of mature IGF2 in insulin granule fractions and by inhibition of secretion by nimodipine and diazoxide. When maximally stimulated by glutamine, the amount of secreted IGF2 rapidly exceeded its initial intracellular pool and tolbutamide, and high K(+) increased IGF2 secretion only marginally. This indicates that the intracellular pool of IGF2 is small and that sustained secretion requires de novo synthesis. The stimulatory effect of glutamine necessitates its metabolism but not mTOR activation. Finally, exposure of insulinomas or beta cells to glutamine induced Akt phosphorylation, an effect that was dependent on IGF2 secretion, and reduced cytokine-induced apoptosis. Thus, glutamine controls the activity of the beta cell IGF2/IGF1R autocrine loop by increasing the biosynthesis and secretion of IGF2. This autocrine loop can thus integrate changes in feeding and metabolic state to adapt beta cell mass and function.
Resumo:
Macrophages play a critical role in intestinal wound repair. However, the mechanisms of macrophage-assisted wound repair remain poorly understood. We aimed to characterize more clearly the repair activities of murine and human macrophages. Murine macrophages were differentiated from bone marrow cells and human macrophages from monocytes isolated from peripheral blood mononuclear cells of healthy donors (HD) or Crohn's disease (CD) patients or isolated from the intestinal mucosa of HD. In-vitro models were used to study the repair activities of macrophages. We found that murine and human macrophages were both able to promote epithelial repair in vitro. This function was mainly cell contact-independent and relied upon the production of soluble factors such as the hepatocyte growth factor (HGF). Indeed, HGF-silenced macrophages were less capable of promoting epithelial repair than control macrophages. Remarkably, macrophages from CD patients produced less HGF than their HD counterparts (HGF level: 84âeuro0/00±âeuro0/0027âeuro0/00pg/mg of protein and 45âeuro0/00±âeuro0/0034âeuro0/00pg/mg of protein, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·009) and were deficient in promoting epithelial repair (repairing activity: 90·1âeuro0/00±âeuro0/004·6 and 75·8âeuro0/00±âeuro0/008·3, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·0005). In conclusion, we provide evidence that macrophages act on wounded epithelial cells to promote epithelial repair through the secretion of HGF. The deficiency of CD macrophages to secrete HGF and to promote epithelial repair might contribute to the impaired intestinal mucosal healing in CD patients.
Resumo:
PURPOSE: To investigate the ability of fibroblast growth factor (FGF) 2-saporin to prevent lens regrowth in the rabbit. METHODS: Chemically conjugated and genetically fused FGF2-saporin (made in Escherichia coli) were used. Extracapsular extraction of the lens was performed on the rabbit, and the cytotoxin either was injected directly into the capsule bag or was administered by FGF2-saporin-coated, heparin surface-modified (HSM) polymethylmethacrylate intraocular lenses. The potential of the conjugate was checked by slit lamp evaluation of capsular opacification and by measuring crystallin synthesis. Toxin diffusion and sites of toxin binding were assessed by immunohistochemistry. Possible toxicity was determined by histologic analysis of ocular tissues. RESULTS: FGF2-saporin effectively inhibited lens regrowth when it was injected directly into the capsular bag. However, high concentration of the toxin induced transient corneal edema and loss of pigment in the iris. Intraocular lenses coated with FGF2-saporin reduced lens regrowth and crystallin synthesis without any detectable clinical side effect. After implantation, FGF2-saporin was shown to have bound to the capsules and, to a lesser extent, to the iris; no histologic damage was found on ocular tissues as a result of implantation of drug-loaded HSM intraocular lenses. CONCLUSIONS: Chemically conjugated (FGF2-SAP) and genetically fused FGF2-saporin (rFGF2-SAP) bound to HSM intraocular lenses can prevent lens regrowth in the rabbit.
Resumo:
The in vitro adenovirus (Ad) DNA replication system provides an assay to study the interaction of viral and host replication proteins with the DNA template in the formation of the preinitiation complex. This initiation system requires in addition to the origin DNA sequences 1) Ad DNA polymerase (Pol), 2) Ad preterminal protein (pTP), the covalent acceptor for protein-primed DNA replication, and 3) nuclear factor I (NFI), a host cell protein identical to the CCAAT box-binding transcription factor. The interactions of these proteins were studied by coimmunoprecipitation and Ad origin DNA binding assays. The Ad Pol can bind to origin sequences only in the presence of another protein which can be either pTP or NFI. While NFI alone can bind to its origin recognition sequence, pTP does not specifically recognize DNA unless Ad Pol is present. Thus, protein-protein interactions are necessary for the targetting of either Ad Pol or pTP to the preinitiation complex. DNA footprinting demonstrated that the Ad DNA site recognized by the pTP.Pol complex was within the first 18 bases at the end of the template which constitutes the minimal origin of replication. Mutagenesis studies have defined the Ad Pol interaction site on NFI between amino acids 68-150, which overlaps the DNA binding and replication activation domain of this factor. A putative zinc finger on the Ad Pol has been mutated to a product that fails to bind the Ad origin sequences but still interacts with pTP. These results indicate that both protein-protein and protein-DNA interactions mediate specific recognition of the replication origin by Ad DNA polymerase.
Resumo:
PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5⁻/⁻/Rpe65⁻/⁻). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65⁻/⁻ and Cspg5⁻/⁻/Rpe65⁻/⁻ mice. No retinal phenotype was detected in the late postnatal and adult Cspg5⁻/⁻ mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65⁻/⁻ mice, no protective effect or any involvement of Cspg5 in disease progression was identified.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
The addition of nerve growth factor (2.5S NGF) to serum-free aggregating cell cultures of fetal rat telencephalon greatly stimulated the developmental increase in choline acetyltransferase activity. Two other neuronal enzymes, acetylcholinesterase and glutamic acid decarboxylase, showed only slightly increased activities after NGF treatment whereas the total protein content of the cultures and the activity of 2',3'- cyclic nucleotide phosphodiesterase remained unchanged. The stimulation of choline acetyltransferase was dependent on the NGF media concentrations, showing a 50% maximum effect (120% increase) at approximately 3 ng/ml (10-10 M 2.5S NGF). NGF treatments during different culture periods showed that the cholinergic neurons remained responsive for at least 19 days. The continued treatment was the most effective; however, an initial treatment for only 5 days still caused a significant stimulation of choline acetyltransferase on day 19. The observed stimulation appeared to be specific to NGF. Univalent antibody fragments (Fab) against 2.5S NGF completely abolished the NGF-dependent increase in choline acetyltransferase activity, whereas Fab fragments of control IgG were ineffective. Furthermore, angiotensin II, added in high amounts to the cultures, showed no stimulatory effect. The present results suggest that certain populations of rat brain neurons are responsive to nerve growth factor.
Resumo:
FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned.
Resumo:
A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.
Resumo:
BACKGROUND: Strategies leading to the long-term suppression of inappropriate ocular angiogenesis are required to avoid the need for repetitive monthly injections for treatment of diseases of the eye, such as age-related macular degeneration (AMD). The present study aimed to develop a strategy for the sustained repression of vascular endothelial growth factor (VEGF), which is identified as the key player in exudative AMD. METHODS: We have employed short hairpin (sh)RNAs combined with adeno-associated virus (AAV) delivery to obtain the targeted expression of potent gene-regulatory molecules. Anti-VEGF shRNAs were analyzed in human retinal pigment epithelial (RPE) cells using Renilla luciferase screening. For in vivo delivery of the most potent shRNA, self-complementary AAV vectors were packaged in serotype 8 capsids (scAAV2/8-hU6-sh9). In vivo efficacy was evaluated either by injection of scAAV2/8-hU6-sh9 into murine hind limb muscles or in a laser-induced murine model of choroidal neovascularization (CNV) following scAAV2/8-hU6-sh9 subretinal delivery. RESULTS: Plasmids encoding anti-VEGF shRNAs showed efficient knockdown of human VEGF in RPEs. Intramuscular administration led to localized expression and 91% knockdown of endogenous murine (m)VEGF. Subsequently, the ability of AAV2/8-encoded shRNAs to impair vessel formation was evaluated in the murine model of CNV. In this model, the sizes of the CNV were significantly reduced (up to 48%) following scAAV2/8-hU6-sh9 subretinal delivery. CONCLUSIONS: Using anti-VEGF vectors, we have demonstrated efficient silencing of endogenous mVEGF and showed that subretinal administration of scAAV2/8-hU6-sh9 has the ability to impair vessel formation in an AMD animal model. Thus, AAV-encoded shRNA can be used for the inhibition of neovascularization, leading to the development of sustained anti-VEGF therapy. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Patients with chronic obstructive pulmonary disease (COPD) often develop weight loss, which is associated with increased mortality. Recombinant human growth hormone (rhGH) treatment has been proposed to improve nitrogen balance and to increase muscle strength in these patients. The aim of this study was to assess the effects of rhGH administration on the nutritional status, resting metabolism, muscle strength, exercise tolerance, dyspnea, and subjective well-being of underweight patients with stable COPD. Sixteen patients attending a pulmonary rehabilitation program (age: 66 +/- 9 yr; weight: 77 +/- 7% of ideal body weight; FEV1: 39 +/- 13% of predicted) were randomly treated daily with either 0.15 IU/kg rhGH or placebo during 3 wk in a double-blind fashion. Measurements were made at the beginning (DO) and at the end (D21) of treatment and 2 mo later (D81). Body weight was similar in the two groups during the study, but lean body mass was significantly higher in the rhGH group at D21 (p < 0.01) and D81 (p < 0.05). The increase in lean body mass was 2.3 +/- 1.6 kg in the rhGH group and 1.1 +/- 0.9 kg in the control group at D21 and 1.9 +/- 1.6 kg in the rhGH group and 0.7 +/- 2.1 kg in the control group at D81. At D21, the resting energy expenditure was increased in the rhGH group (107.8% of DO, p < 0.001 compared with the control group). At D21 and D81, the changes in maximal respiratory pressures, handgrip strength, maximal exercise capacity, and subjective well-being were similar in the two groups. At D21, the 6-min walking distance decreased in the rhGH group (-13 +/- 31%) and increased in the control group (+10 +/- 14%; p < 0.01). We conclude that the daily administration of 0.15 IU/kg rhGH during 3 wk increases lean body mass but does not improve muscle strength or exercise tolerance in underweight patients with COPD.
Resumo:
The epidermal growth factor (EGF) receptor/ligand system stimulates multiple pathways of signal transduction, and is activated by various extracellular stimuli and inter-receptor crosstalk signaling. Aberrant activation of EGF receptor (EGFR) signaling is found in many tumor cells, and humanized neutralizing antibodies and synthetic small compounds against EGFR are in clinical use today. However, these drugs are known to cause a variety of skin toxicities such as inflammatory rash, skin dryness, and hair abnormalities. These side effects demonstrate the multiple EGFR-dependent homeostatic functions in human skin. The epidermis and hair follicles are self-renewing tissues, and keratinocyte stem cells are crucial for maintaining these homeostasis. A variety of molecules associated with the EGF receptor/ligand system are involved in epidermal homeostasis and hair follicle development, and the modulation of EGFR signaling impacts the behavior of keratinocyte stem cells. Understanding the roles of the EGF receptor/ligand system in skin homeostasis is an emerging issue in dermatology to improve the current therapy for skin disorders, and the EGFR inhibitor-associated skin toxicities. Besides, controlling of keratinocyte stem cells by modulating the EGF receptor/ligand system assures advances in regenerative medicine of the skin. We present an overview of the recent progress in the field of the EGF receptor/ligand system on skin homeostasis and regulation of keratinocyte stem cells.
Resumo:
Photons participate in many atomic and molecular interactions and changes. Recent biophysical research has shown the induction of ultraweak photons in biological tissue. It is now established that plants, animal and human cells emit a very weak radiation which can be readily detected with an appropriate photomultiplier system. Although the emission is extremely low in mammalian cells, it can be efficiently induced by ultraviolet light. In our studies, we used the differentiation system of human skin fibroblasts from a patient with Xeroderma Pigmentosum of complementation group A in order to test the growth stimulation efficiency of various bone growth factors at concentrations as low as 5 ng/ml of cell culture medium. In additional experiments, the cells were irradiated with a moderate fluence of ultraviolet A. The different batches of growth factors showed various proliferation of skin fibroblasts in culture which could be correlated with the ultraweak photon emission. The growth factors reduced the acceleration of the fibroblast differentiation induced by mitomycin C by a factor of 10-30%. In view that fibroblasts play an essential role in skin aging and wound healing, the fibroblast differentiation system is a very useful tool in order to elucidate the efficacy of growth factors.