998 resultados para Gibson, James William
Resumo:
Notice regarding the late James Middough that anything concerning his will is granted to William Woodruff and Richard Woodruff (merchants) executors of the will, August 3, 1839.
Resumo:
Printed blank from James McWhirter of Woodstock, official assignee, addressed to S.D. Woodruff in regard to the Oct. 10th meeting regarding William Little, an insolvent. This document is slightly stained. This does not affect the text, Sept. 20, 1866.
Resumo:
Printed blank regarding the Insolvent Act of 1864, this was sent to S. D. Woodruff in the matter of William Little, an insolvent. There was to be a meeting on the 10th day of October for public examination of the insolvent. The document was signed by James McWhirter, official assignee, Sept. 20, 1866.
Resumo:
William Frederick Haile was born in Putney, Windham County, Vermont on November 4th, 1791. He was raised in Fairfield, Herkimer County, New York. At the age of 21 he entered the United States Army. He served in the War of 1812 as a lieutenant in the 11th United States Infantry. He was severely wounded in the Battle of Lundy’s Lane [not mentioned in this memoir]. After the war he settled in Plattsburgh, New York and became a lawyer. He was a judge from April 1837 to March of 1843. He was also the fifth collector of customs for the District of Champlain. He died on October 1861 at the age of 69. This document was written for the children of William Frederick Haile in January of 1859 [as noted on p.23]. The memoir ends in July of 1814 before the Battle of Lundy’s Lane. Haile’s memoir is laced with names of military personnel and he expresses his opinions freely.
Resumo:
Indenture of bargain and sale (vellum) between David William Smith of Alnwick, Great Britain and William Dickson of Niagara for 90 acres in the Township of Niagara –instrument no. 5926. Attached to this is a notice of Power of Attorney dated Apr. 6, 1810, which states that David William Smith of Alnwick, Great Britain allows James Crooks of Niagara to be his lawful attorney. The power of attorney is slightly torn. This does not affect the text, Sept. 21, 1810.
Resumo:
Trata-se de uma análise do consagrado conto Uma Rosa para Emily, de William Faulkner, voltada para alguns dos principais aspectos de sua estrutura. Após considerarmos o enredo, discutimos a construção das personagens, com destaque para a protagonista, fazendo um levantamento e comentários sobre possíveis fontes de inspiração, destacando, entre outras, aspectos da biografia da poeta Emily Dickinson, a ficção e a poesia de E. A. Poe, romances de Charles Dickens e Henry James, o conto de Sherwood Anderson e a poesia de William Blake, Emily Dickinson, Robert Browning e John Crowe Ransom, acrescentando paralelos com o conto Bartleby, o escrivão, de Herman Melville. Analisamos, então, o foco narrativo, os símbolos e o significado, ressaltando aqui o desenvolvimento temático da narrativa.
Resumo:
William V. (Bill) Sliter, an internationally known micropaleontologist and research geologist for the U.S. Geological Survey, passed away suddenly, October, 1997, while talking to a colleague in his office. In his honor, B. Huber, T. Bralower, and M. Leckie organized a keynote symposium ‘‘Paleoecological and Geochemical Signatures of Cretaceous Anoxic Events’’ at the 1998 annual meeting of the Geological Society of America in Toronto, Canada. This theme issue of the Journal of Foraminiferal Research contains the published papers from the symposium and is dedicated to his memory.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
Resumo:
v.1
Resumo:
v.2
Resumo:
v.3